\Spara&
\_ Bevara/

SLUTRAPPORT

Al-tillampningar for energilagring i
kulturhistoriska byggnader

Abolfazl Hayati (HiG)

Jan Akander (HiG)

Magnus Mattsson (HiG)

Ali Ghadirzadeh (RoboUbiq AB)
Hossein Bakhtiari (Gavlefastigheter AB)

Bjorn Karlsson (HiG)

Energimyndighetens projektnummer 2022-200334



FORORD

Spara och bevara ar ett forsknings- och utvecklingsprogram som Energimyndigheten initierat for att
oka kunskapen om energieffektivisering i kulturhistoriskt vardefulla byggnader. Programmet syftar
till att utveckla och formedla kunskap och tekniklésningar som bidrar till en energieffektivisering i
dessa byggnader utan att deras varden och inventarier forstors eller férvanskas.

Den varsamma energieffektiviseringen ska uppnas genom interdisciplindra samarbeten, dar teknik
moter kulturvard. Malet ar att skapa en bestaende kunskapsgrund inom omradet
energieffektivisering i kulturhistoriskt vardefulla byggnader och bidra till en langsiktig, hallbar
forvaltning av det aldre fastighetsbestandet.

Programmet samordnas av Uppsala universitet.

Rapporten redovisar projektets resultat och slutsatser. Publicering innebar inte att
Energimyndigheten eller Uppsala universitet tar stallning till framforda slutsatser, resultat eller
eventuella asikter.
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SAMMANFATTNING

Historiska byggnader star for en betydande del av dagens byggnadsbestands energianvandning,
samtidigt som energibesparande atgarder pa dessa ar begransade av regelverk kring kulturellt
bevarande, antikvariska och estetiska skal. Den del av byggnadsbestandet som byggts fore 1945 star
for cirka 20 procent av all energianvandning i Sveriges byggnadsbestand. Syftet med denna studie ar
att utvardera anvandningen av byggnadsstommen i en specifik historisk stenbyggnad som ett
varmelager. Det innebdr att termisk energi lagras i byggnaden utan att den fysiskt fordndras. Genom
att anvanda artificiell intelligens (Al) och maskininlarningsmodellering kan varmeforsorjningen styras
med hjalp av vdderprognoser och férvantad narvaro (binar kalenderisering) av kontorspersonalen i
byggnaden. Detta mojliggdr optimering av energianvandning och effektbehov samtidigt som
inomhustemperaturen halls inom komfortgréanserna. Projektet stravar efter att utvardera
energilagringspotentialen for att fraimja effektivare energianvandning i historiska byggnader genom
energisimuleringar. Den genomférda studien indikerar betydande besparingar i total och spetsenergi
for den undersokta byggnaden och tyder pa att metoden kan tillampas pa andra liknande fall.

Nyckelord: Fjarrvarme, Djupinlarning, Artificiell intelligens (Al), Historisk byggnad, Energilagring,
Termisk massa, Topplastminimering (peak shaving), Komfort



Abstract

Historical buildings account for a significant portion of today's building stock energy use, with usually
limited energy-saving measures feasible due to by cultural conservation rules and preservation
aspects in building regulations. The part of the building stock that was built before 1945 accounts for
approximately 20 percent of all energy use in the Swedish building sector. The purpose of this study is
to evaluate the use of the building structure in a specific historical stone building as a heat storage
system. This involves storing thermal energy in the building's structures without physically altering
them. By utilizing artificial intelligence (Al) and machine learning modeling, heat supply can be
controlled using forecasts of weather and binary calendarization of occupancy. This enables
optimization of energy usage and power demand while maintaining adequate indoor temperatures.
The project aims to assess the energy storage potential to promote more efficient energy use in
historical buildings through energy simulations. The conducted study indicates significant savings in
both total and peak energy for the examined building, and suggests that the method could be applied
to other similar cases.

Keywords: District heating, Deep learning, Artificial Intelligence (Al), Historical building, Thermal mass,
Energy Storage, Peak shaving, Thermal comfort
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1. INLEDNING OCH BAKGRUND

1.1 BAKGRUND

Manga av vara kulturhistoriskt vardefulla byggnader anvinds idag som bostdder, kontorslokaler,
muséer, skolor mm och behover darfor forses med komfortabel innetemperatur. Den del av
byggnadsbestandet som byggts fore 1945 star for cirka 20 procent av all energianvdndning i landets
byggnadsbestand. Mojligheterna att energieffektivisera kulturhistoriska byggnader ar samtidigt
begrdnsade pa grund av bevaranderegler (varsamhetskrav och férvanskningsférbudet). Oftast ar
sadana byggnader massiva konstruktioner bestaende av material med hog varmekapacitet och
varmekonduktivitet, vilket medfér mojligheter att lagra stora energimangder utan att vasentligt
variera innetemperaturerna i tiden (Akander, 2000). Men lagringsformagan &r aven beroende av
byggnadens varmeforluster genom varmeledning och ventilation/luftinfiltration, vilka ofta antar hoga
belopp och kan uttryckas som en férlustkoefficient. Den termiska tidskonstanten for en byggnad
uppskattas genom att dividera termiska massan med forlustkoefficienten. | regel har dldre byggnader
stora tidskonstanter vilket paverkar deras respons pa temperaturforandringar i uteklimatet. Det vill
sdga att bygganden blir som ett stort varmebatteri som kan lagra energi och frigbra den senare nar det
ar kallare ute. Energilagringen beror pa byggandens storlek och termiska massa samt
forlustkoefficient, samt hur mycket innetemperaturerna tillats fluktuera. Byggnadens tidskonstant,
givet lampligt styr- och reglersystem, ger enligt (Karlsson, 2012; Norén et al., 1999; Verbeke &
Audenaert, 2018), stor potential till: 1) jdmnare inomhustemperaturer i tiden, 2) minskning av
varmeeffektbehovet, atminstone kortvarigt och 3) energibesparing.

Det blir allt vanligare att energiféretag erbjuder sina kunder sa kallad effektberoende energirdkning,
d.v.s. ju fler och hogre effekttoppar man har vid t.ex. kallare vader, desto dyrare blir samma levererad
mangd energi. Nar mycket uppvarmning behovs samtidigt fran olika kunder, skapas effekttoppar i
fjarrvarmenatet, vilket gor att tillfalliga och dyra resurser behovs for att tacka behovet. Olika [6sningar
sasom energilagringsmetoder kan bidra till laststyrning pa natet och dartill spara stora belopp bade for
fijarrvarmeleverantdren och for fastighetsdgare. Energi- och kostnadsbesparingspotentialen dr annu
storre hos aldre byggnader eftersom de ofta ar daligt isolerade och har stor termisk massa.
Energilagringsmetoden kan leda till sparad primarenergi och effektivare resursanvandning, och
samtidigt bidra till mindre vaxthusgasutslapp och battre miljo.

Att lagra varme under perioder med lagre efterfragan till kallare perioder fungerar som en strategi for
varmeeffektshantering och hallbar energiférsérjningsplanering. Foljaktligen kan varmeforsorjningen
till byggnaden tillfalligt minskas under perioder med hdga effektbehov, vilket mojliggdr anvandning av
lagrad termisk energi i byggnadsstommen. Hayati et al. undersdkte temperaturminskningen inomhus
och leveransen av varmeeffekt till en flerfamiljsbyggnad med fokus pa att berakna
varmelagringskapacitet och termiska trogheten (Hayati et al., 2022). | det genomférda
avklingningstestet, dar energiforsorjningen strops under 5 timmar genom att utegivaren “lurades” till
att kanna 15 grader hogre temperatur an vad som radde vid tillfallet, var den beraknade
energiforsorjningsminskningen 61% under 5 timmar, vilket resulterade i en minimal
temperatursankning inomhus pa endast 0,3 °C.

Artificiell intelligens (Al) och maskininlarningsalgoritmer (ML) kan identifiera inflytelserika parametrar
och variabler som paverkar energianvandningen och noggrant prediktera deras varden. Dessa
modeller kan urskilja potentiella effekttoppar genom att lara sig fran tidigare varierande




omstandigheter. Al-l6sningar anvander byggnadens energi- och effektsignatur, inklusive faktorer som
termisk massa, termisk komfort och vaderprognoser for att forutse olika timvisa och dagliga energi-
och effekttoppmonster (Calikus et al., 2019; Vandermeulen et al., 2018). Denna metod innebar att
traningsmodeller for styr- och reglering anvands med uppmatta data, som omfattar energianvandning,
temperaturer och implicit varme fran internlaster samt solinstralning. Modellerna forutspar
varmeforsorjning och bibehaller "flytande" inomhustemperaturer inom ett angivet intervall genom att
anvanda den termiska massan som finns inom byggnadsskalet. Utbytet av storre energimangder sker
nar temperaturskillnaden mellan inomhus- och utomhusmiljon dkar. Det ar viktigt att forhindra
overdrivna temperaturfluktuationer som kan leda till ogynnsamma relativa fuktighetsnivaer eller héga
fluktuationer, vilket negativt paverkar material, inredning, foremal eller dekorationer inom byggnaden.

Att implementera intelligent drift och underhall hos historiska byggnader innebér integrering av
digitala teknologier och dataanalysmetoder. Detta tillvagagangssatt hjalper till att uppratthalla
funktionerna hos dessa byggnader samtidigt som deras kulturvarden bevaras. Ni et al. utvecklade och
testade en omfattande digitaliseringsplattform for intelligent underhall av historiska byggnader (Ni,
2023). DPlattformen sammanbinder Internet of Things (loT), molnlagring och -berakningar samt
maskininlarning med syfte att samla in data fran kulturhistoriska byggnader, avsl6ja innemiljéernas
och energiprestandas status, och via en offentlig molnplattform lagra data och distribuera
information och beslutsunderlag (Ni et al., 2022a, 2022b). Dessutom anvands djupinlarningsmodeller
for att fanga trender och osakerheter i byggnaders energianvandning (Ni et al., 2023, 2024).
Plattformen kan emellertid framst anvandas for att dvervaka byggnaden men optimerar inte den
levererade energin och byggnadens energianvandning.

Att uppratthalla en delikat balans mellan att bevara autenticiteten hos kulturarvsbyggnader och att
inforliva energieffektivitetsatgarder ar viktigt. Genom att samordna modern teknik med engagemang
for att bevara det forflutna kan vi garantera att kulturhistoriska byggnader och miljoer bestar som
symboler for vart kulturarv, samtidigt som de spelar en roll for att frdmja en mer hallbar framtid. Detta
projekt syftar till att nyttja byggnadens stomme som ett varmelager for att bevara och spara energi
utan fysiska ingrepp. Genom att anvdanda Al och ML-modeller regleras varmeforsorjningen strategiskt
baserat pad vdaderprognoser och en binar kalender for personnérvaro. Denna metod mojliggor
optimering av energianvandning och effektbehov samtidigt som inomhustemperaturer bibehalls inom
ldmpliga nivaer. Detta inkluderar tillfallig minskning av uppvarmningen utan att kompromissa med
lokalernas termiska komfort.

Projektet har som utgangspunkt den matdata som tidigare uppmatts och sparats for den studerade
byggnaden, vilken medger analys av den information som dataserierna implicit innehaller. Olika ML-
metoder kan anvandas for att prognosticera effekttoppar (med hjélp av 6vervakad (supervised)
inlarning), identifiera monster for prognostisering av effekttoppar, analysera optimalt energiutbyte och
lagringsmetoder samt erbjuda schema fér energidistributionen. Det finns ocksa sa kallade forstarkta
inlarningsmodeller (Reinforcement learning) som kan lara sig av datahistorik (modell-baserad LR) och
anvanda modellen for att trédna den i beslutfattande riktlinjer/policyer som kan avgora lampliga
atgarder sdsom schema och typ av varmetillforsel till byggnaden. Modellerna lar sig fran offline eller
urkopplat data (offline RL) och korrigerar sig sjalva via prévning med on-line data (trial & error) och
forbattrar sin beslutsprocess genom en beldningsstruktur (till exempel, nar den lyckats med minskning
av toppeffekter med bebihallen termisk komfort hos brukarna), under handledning av energiexperter.
Pa s satt lar sig modellerna om systemets behov och variationer enligt byggnadens efterfragan,
upptdcker och prognostiserar effekttoppar och optimerar darmed energianvandning och sanker
dérmed uppyvarmningskostnader och CO»-utslapp.



1.2 SYFTE OCH MAL

Projektet bidrar till effektiv energianvdandning, resursutnyttjande, flexibilitet, och robusthet och
minskning av vaxthusgasutslappen utan att paverka byggnaders kulturvarden, vilket ar i linje med
regeringens mal, bl.a. att ha 50 procent effektivare energianvandning t.o.m. ar 2030 (jamfort med
2005), och aven globala klimatmal sdsom Parisavtalet, att halla den globala uppvarmningen under 1,5
grader. Projektet bidrar ocksa till Sveriges miljomal om God bebyggd miljo, Begransad klimatpaverkan
och Generationsmalet.

Syftet ar att med hjélp av de forslagna Al och ML-modellerna prova strategier for inlarning av
byggnadens behov (energi och effekt) som upptacker monster och predikterar effekttoppar och
optimerar darmed energianvdandningen i god tid utan att termiska komforten inomhus forsamras.

Dessa delar ingar som projektets resultat och uppfyllda mal:

1) Utvecklade Al-modeller samt databaser for laststyrning pa fjarrvarmenat efter finjustering
("fine-tuning”) och utvardering.

2) Lonsamhetsanalys och kostnadsbesparingar i anknytning till energibesparingar och
toppeffektreduktioner samt analys av priméarenergifaktorer och miljopaverkan i anknytning till
energibesparingar pa basis av hur energiproduktionen &r idag och hur den uppskattas se ut ar
2030.

3) Malet ar att sprida ut resultatet bade nationellt via workshop med seminarier och
internationellt. Malet ar ocksa att 6ka kunskapen om energilagring i byggnadsstommen hos
energileverantorer, fastighetsagare och forvaltare samt antikvarieexperter genom
helhetsperspektiv pa byggnaden som ett system.

1.3 OMFATTNING OCH AVGRANSNING

Projektet utvarderar potentialen for att forbattra termisk komfort, energieffektivitet och topptrimning
av levererad uppvarmningseffekt i historiska byggnader genom utveckling av en Al-modell. Den
foreslagna Al-modellen kan forutsaga varmebehovet i fjarrvarmen (FV) i forvag baserat pa
vaderprognoser, en binar kalender for brukandet av byggnaden och interna laster, samt lagra
fijarrvarme i byggnadens stomme infér kallare perioder. Den utvecklade Al-modellen har tre
huvudsakliga funktioner som kan viktas av anvéndaren:

- Optimal termisk komfort
- Optimal energi (minimera fjdrrvarmeleveransen)
- Optimal effekt (kappa toppeffekter av fjarrvarmeleveransen)

Pa langre sikt ar det tankt att systemet ska fortsatta anvandas efter projektets avslut och att
metodiken kan implementeras i andra aldre och kulturhistoriska byggnader.

Ett av syften med projektet har varit att kunna implementera och testa Al modellerna i styrsystemen
hos fallstudiebygganden, Radhuset i Gavle, men tyvarr lyckades det inte att praktiskt infora dessa, pa
grund av bristande villighet fran fastighetsagaren och framfoérallt styrsystem-tillverkaren.
Forhoppningsvis kan projektet kompletteras med implementering av Al modellen i byggnadens
styrsystem i framtiden.



2. GENOMFORANDE

Byggnadens som har anvants som fallstudie ar Radhuset beldget i staden Gévle i mellersta Sverige.
Radhuset ar en kulturmarkt byggnad fran 1780-talet som nu anvédnds som kontorsbyggnad med en total
anvandbar golvyta p& 2100 m2. Uppvarmning av utrymmen och tappvarmvatten sker genom fjarrvarme.
Rummen varms med radiatorer och det sker dven en eftervarmning av tilluften fran tva FTX-system.

For att kunna utveckla Al-modeller behovs en val strukturerad (flerdrig) datahistorik fran
energianvandning av byggnaden i fraga, med minimum timvis tidsupplosning. Energidata maste
synkroniseras med vaderdata. Data for inomhustemperatur, levererad fjarrvarme och varmevattnets
framledningstemperatur samlas in fran fastighetsautomations-systemet (BMS) Schneider-modell 25101
(Schneider Electric, n.d.). Profiler for inomhustemperatur berdknades med hjalp av registrerade
lufttemperaturer fran zoner i BMS och har viktats fran genomsnittliga varden 6ver golvytan under
matperioden. Vaderdata inklusive utomhustemperatur hamtades fran Sveriges Meteorologiska och
Hydrologiska Institut (SMHI). For att kunna utveckla Al-modeller sammanstalls en langre (nastan ett och
ett halvt ar) strukturerad dataserie fran Radhuset enligt nedan:

1. Levererad timvis fjarrvarmeeffekt (kwWh/h) for hela byggnaden — totala varmen inklusive
uppvarmning av utrymmen och tappvarmvatten.

2. Inomhustemperaturer (°C) (timvis genomsnittligt golvytaviktad for hela byggnaden).

3. Framledningstemperatur, varmevattnets temperatur till radiatorer, (°C) (timvis genomsnittligt
varde).

4. Timvis utomhustemperatur (°C).

Vi utvecklade olika maskininlarningsalgoritmer inklusive moderna djupinlarningsmetoder for att trana
modeller baserade pa insamlad data. | denna studie lag fokus pa att optimera vardena for
fiarrvarmeleverans for att uppratthalla en bekvam inomhustemperatur for en specifik byggnad. Malet
var att identifiera en sekvens av framledningstemperaturer som minimerar levererad varme och/eller
toppeffekter samtidigt som inomhustemperaturen halls inom boérvardesinstallningar.

Tillvagagangssattet omfattar tre nyckelkomponenter: en generativ modell, en dynamisk modell
(prediktionsmodellen) och en optimerare. Den generativa modellen genererar olika sekvenser av
framledningstemperaturer med hansyn taget till féregdende dagars data. Prediktionsmodellen
forutsager inomhustemperaturer baserat pa olika indata, inklusive framledningstemperatur och
prognostiserad utomhustemperatur. Slutligen utnyttjar optimeraren den genererade sekvensen for att
hitta optimala framledningstemperaturer, vilket sakerstéller effektiv styrning av fjarrvarme for
férbattrad komfort och energioptimering. Dessutom utvecklade vi en grundldggande linjar modell (en
linjar varmekurva som efterliknar den verkliga i byggnaden) for jamforelsedndamal. En detaljerad
beskrivning av Al-modellen ges i bilaga A.
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3. RESULTAT

Tabell 1 presenterar uppmatta och Al-modellgenererade data for arlig uppvarmning av
fallstudiebyggnaden (Radhuset).

Tabell 1: Arligt uppmatt och beraknad fjarrvarme, FV, (kWh)

Fjarrvarmeanvandning Skillnad mot uppmatt
(kwh) fidrrvarmeanvandning (%)
Arlig uppmitt FV, &r 2021 233238 100,0
Arlig FV - berdknad av linjar modell 238 624 102,3
Arlig .FV - berdknad av Al-optimal modell for 999 691 955
termisk komfort
Arlig F_V - berdknad av Al-optimal modell fér 145 364 623
energi
Arlig FV - berdknad av Al-optimal modell for 166 517 714
effekt
Arlig sparad energi - beraknad av linjar modell -5386 -2,3
Arlig sparad energi - berdknad av Al-optimal
modell fér termisk komfort 10547 45
Arlig spa.lfad ener_gl - beraknad av Al-optimal 87874 377
modell fér energi
Arlig spa.lfad energi - berdknad av Al-optimal 66 721 286
modell fér effekt

Fjarrvarmen (FV) i Gavle, tillhandahallen av det lokala energiféretaget Gavle Energi, genereras helt
fran fornybara kallor. Produktionsblandningen ar 100% férnybar, framst bestdende av spillvarme fran
industrier samt kondensationsvarme fran rokgaser och varme fran kraftvarmeverk (CHP) som drivs
med biobranslen som bark, returtrd och en liten mangd flis, samt sma mangder bioolja. Denna
produktionsmetod resulterar i en lag miljopaverkan, motsvarande 7g CO,-ekvivalenter per
kilowattimme (kWh) ar 2023; ar 2021 var det 6g CO,-ekvivalenter per kilowattimme (kWh) (Gavle
Energi, n.d.-a). Som ett resultat motsvarar den totala mdngden FV som levereras till Radhuset cirka 1,4
ton CO-ekvivalenter arligen.

Dessutom ar prisbilden for detta miljomedvetna fjarrvarmesystem satt till 0,526 svenska kronor per
kWh, tillsammans med vissa fasta avgifter for ar 2024 (Gavle Energi, n.d.-b). Foljaktligen, enligt den
arliga sparade fjarrvarmenergi (kWh) och -toppar (kWh/h) som presenteras i Tabell 1 ovan resp. Tabell
2 i Bilaga B, kan optimering av energi- och effektmodeller generera ungefar 38 respektive 29%
energibesparing, motsvarande en minskning av varmekostnaderna med cirka 46 000 respektive 35
000 svenska kronor (motsvarande 22 resp. 17 kr/m?) baserat pa det allmanna FV priset hos
energileverantéren.

Men for foretagskunder finns det dven andra delar i pristariffen sdsom kapacitetsavgift,
sasongsuppdelat energipris samt ett volymavdrag. Kapacitetsbehov ar berdaknat enligt en linjar

prognos av pyggandens energibehov per dygn nar det ar minus 10 grader °C i utetemperatur.
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Berakningen baseras pa dygnsforbrukningar for byggnaden som uppmatts (mandag — fredag) under
narmast foregaende period, november — mars. For 2024 ar Kapacitetspris = 37,12 kr/kWh.
Volymavdraget baseras pa fjarrvarmeleveransens omfattning per ackumulerat kalenderar och
anlaggning. Om fjarrvarmeanvandningen ar storre an 100 MWh gors ett avdrag pa priset varje manad.
En mer detaljerad kostnadsanalys med hadnsyn till 2024 tariff av energibolaget presenteras i Bilaga C.

| Figur 1 sammanstalls ett varaktighetsdiagram for tillférd FV. Notera att den linjara
predikteringsmodellen kan 6ka FV-behovet nagot, vilket leder till en efterféljande 6kning av
varmekostnaderna. Tabell 2 i Bilaga B visar att de 10 hogsta effekttimmarna blir nagot hogre med den
linjdra modellen, medan Al-modellerna kan minska dessa med cirka 6%. Al-modellen med
varmeeffektoptimering har en nagot hogre potential for att kapa de 10 hogsta FV-effekttopparna och
resulterade i ca 7% minskning. For mer detaljerade resultat se Bilaga B.

Som komplement till energisignaturdiagrammen i Bilaga B illustrerar Figur 1 varaktighetsdiagram for
de studerade fallen. Figuren visar dven energibesparingspotentialen som Al-modellens prediktioner
medfor, eftersom arean under respektive kurva representerar arlig total energianvandning. Figuren
indikerar det som namnts ovan om att den linjara modellen ibland till och med forstarker topparna i
leverans av fjarrvarme, eftersom den saknar férmaga att leverera FV i forhallande till byggnadens och
uteklimatets varierande dynamik.
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Figur 1: Varaktighetsdiagram for den tillforda fjarrvarmen (District Heating, DH) for uppvarmning och
varmvatten for fallstudiebyggnaden, Radhuset i Gavle, inklusive uppmatta samt modellberdkningar.
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4. HUR SKA RESULTATEN KOMMA TILL ANVANDNING

Var idé ar att presentera denna fallstudie som ett praktiskt gorbart exempel pa energilagring i
kulturhistorisk byggnadsstomme som en resurseffektiv innovativ metod for energi- och
effekttoppbesparingar med bibehallen termisk komfort, och inte minst sprida resultatet bl. a. genom
deltagande i internationella och nationella konferenser/seminarier.

Malsdttningen ar att projektets resultat skall fa stor inverkan pa effektivare energianvandning i
kulturhistoriska byggnader via lagring av energi i byggnadsstommen, samt hoja kunskapen om
metodens potential och miljdpaverkan. Metoden kan utvecklas och automatiseras till att bli en
bepréovad metod for dldre kulturhistoriska byggnader, sarskilt “tunga” sddana, med stor termisk massa.
Resultaten ska dven kunna anvadndas av fastighetsdgare som tredjepartsinformation samt bidra till att
vara en form av kompletterande beslutsunderlag for byggnadsférvaltare och antikvariska experter.
Eventuella befintliga styr- och regleringsutrustningens kan uppdateras via automatiska anpassning av
reglerstrategin, dven for forbattrad termisk komfort inne.

Den utvecklade Al-modellen med Graphic User Interface (GUI) i den har studie kan vara vagledande for
att utveckla energioptimeringstjanster och produkter samt vid beslut om vilka 16sningar som ar
langsiktigt lampligast ur energi- och miljoperspektiv. Projektet bidrar till en mer flexibel och robust
energitillforsel med ett jamnare effektbehov, vilket gagnar bade energibolag, fastighetsagare samt
miljo, da dyrare och eventuella tillfalliga fossilberoende energiresurser kan undvikas, vilket leder till
lagre vaxthusgasutslapp.

Som en liten Al modelleringsguide behovs féljande etapper for att kunna skapa och trana en Al modell:

For att kunna utveckla Al-modeller behdvs en val strukturerad (flerarig) datahistorik for
energianvandning och temperaturer fran innemiljon, utemiljon och framledningstemperaturer for den
aktuella byggnaden, med minimum timvis tidsupplosning. Energi- och temperaturdata maste
synkroniseras med vaderdata. Datainsamling ska ske i samrad med fastighetsdgare och energibolaget
och det ar utmanande for att det kan saknas data for vissa perioder och ibland maste data tolkas och
omsorteras for att kunna anvdndas for traning av Al modeller. Nar det galler fjarrvarme, som ér i fokus
i denna studie, kan via sa kallade DUC (DataUnderCentraler) hela varmetillforseln i varje
fijarrvarmecentral styras pa ett mer smidigt och centralt satt, dvs. energi och effekttillforsel samt
framlednings- och innetemperatur kan avldsas och valideras i realtid centralt fran energibolaget.

Efter datainsamlingen kan olika maskininlarning (ML)-algoritmer inklusive djupinlarningsmetoder
utvecklas och provas pa uppmatta energi- och effektdata hos byggnaden, for att fa modeller som med
hog precision kan forutsaga effekttoppar. For att avgora vilken typ av ML modeller som ar lampligast
bor dataserien inklusive effekttoppar undersotkas samt eventuella avvikelser mellan modeller och
matdata tolkas och kategoriseras.

Laststyrningsmodellernas potential for att minska toppeffekter bor prévas och valideras mot matdata
(avvikelsedetektering). For detta kommer de utvecklade ML-modellerna att anvéandas, for att korrigera
eventuella avvikelser i en iterativ process. For att forbattra robustheten, utvecklas
osakerhetsmedvetna ML-modeller med hjalp av vilka Al-systemet kan vaxlas till att kontrollera i sakert
ldge nar osadkerheten for ML-modellen dr hog. Probabilistiska modeller byggs for att hantera
osakerheter som harroér fran brist pa data, till exempel fér laga inomhustemperaturer (utanfor
komfortintervallet) saval som extremfall av kallt vader utéver vad som redan finns i den uppmatta
dataserien. Al modellen”utbildas/tranas” for att tillata algoritmen att upptacka toppeffekter i god tid
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och implementera en lamplig atgard eller beslutssekvens for att styra varmetillforsel och minska
toppeffekten med bibehallen termisk komfort. Algoritmen erhaller optimal hantering av osakerheter
baserade pa algoritmer for forstarkningsinlarning (RL) och mer specifikt modellprediktiv kontroll
(MPC). Denna losning bygger pa att uppna maximerad total beldning genom att anvanda offline data
som samlades in i féregdende steg. Sddana RL-algoritmer som lar sig av offline-data istallet for online
trial-and-error ar sarskilt lampliga for var problemformulering eftersom en behaglig rumstemperatur
maste uppnas hela tiden, dven under RL-traning.

Ett detaljerat uppgifts- och arbetspaket behovs for att utveckla Al-modellen, dar all tillgédnglig indata
framgar samt forvantade utdata inom respektive tidsram. En plan bor tas fram for eventuell
modellverifiering, finjustering och validering av modeller.

Tidsatta arbetspaket forslas enligt foljande:

1)

Design av ML I6sningar samt Datainsamling

Utvalda byggnader uppvarmda med fjarrvdarme. Energibolaget som levererar varmen till
byggnaderna har mojligheter att styra vairmemangden och temperaturen pa varmevatten via DUC
(dataundercentralen) och styrning (som finns i varje fjarrvarmecentral) med mojlighet att tillfalligt
hoja eller sénka temperaturen. Data inkluderar levererad energi och effekt, systemtemperaturer,
floden samt inne- och utetemperatur och eventuellt kompletterande matdata t ex verksamhets-
och fastighetsel. Tillrdcklig samlade data (kanske med tva ar datahistorik fér samma byggnad) ska
struktureras i en databas med olika kategorier som ska anvandas for att utveckla och trdna
maskininlarningsmodeller. Férutom indata gors en skiss av forvantade resultat, prestanda,
noggrannhet, modellverifiering, mojlighet for finjustering och modellvalidering.

Forvdntat resultat: En databas av strukturerat samlat indata inklusive levererad energi och effekt,
temperaturer, floden samt inne- och utetemperaturen. Information om hur energilagringen kan
paverka operativa temperaturen hos lokaler och uppvarmning. | denna etapp framgar dven hur
byggnadens tidskonstant paverkar varmedistribution i byggnaden samt uppskattningar av
byggnadens lagringskapacitet.

Modelltraning och utforskning/utvardering av ML modeller

Med hjalp av Framat Dynamisk Modell Traning (inldrning) anvander vi samlade indata (offline data)
for att trana olika djupinlarningsmodeller sasom multilayer perceptron (MLP), Convolutional Neural
Networks (CNN) och transformatorer. Modellerna utforskas och provas for att koppla byggnaden

energilagring till innetemperatur, termisk komfort och energianvandning i olika vaderforhallanden.

Syftet med framatriktad modellinlarning ar att fa en modell med féljande input- och outputdata:

e Aktuella/tillgangliga matdata: aktuella temperaturer inomhus och utomhus, nuvarande
vaderforhallanden, varmeflode/effekt (bade framledningstemperatur, returtemperatur och
vattenfldde) samt en binar kalender fér uppskattad personnéarvaro.

e Sekvens av framtida indata (prognos): timvis vaderprognos for en given tidshorisont (t.ex.
under det narmaste dygnet eller veckan) samt en binar kalender for uppskattad
personnarvaro.

e Konstanta parametrar: byggnadens termiska parametrar samt mojligtvis
fonsterparametrar, apparater och belysning.

e Styrsignaler: levererad fjarrvarme per timme till byggnaden for samma tidshorisont.

Modellgutput:
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e Berdknad (prognoserat) timvis inomhustemperatur for samma tidshorisont (t.ex. under det
narmaste dygnet eller veckan).

Efter utforskning av olika modeller valjs lampligaste algoritm och en forsta version av modellen kan
utvecklas.

Modellen analyseras avseende avgdrande parametrar och deras intervall och
besparingsmajligheter.

Model predictive control — kontrollstrategi

Utvecklad maskininldarningsmodell kommer ocksa utvarderas for automatiserad metod sa att den
sjdlvanpassas till olika scenarier for att studera energibesparingar och minskning av effektbehov.
Indata avser dven att mojlighet till andring i byggnadernas systeminstaliningar genom styr- och
reglerteknik for att faststélla byggnadens dynamik baserad pa olika scenarier och olika
vaderforhallanden for uppvarmning.

Med den utvecklade modellen kan vi nu hitta en sekvens av levererad fjarrvarme (t.ex. var 30:e
minut under det ndrmaste dygnet) som gor att den aktuella rumstemperaturen ligger sa nara
borvardet som mojligt. Kontrollen kan utféras av Modell Prediktiv Kontroll (MPC) som &r en
avancerade kontrollstrategi baserad pa anvandningen av den utbildade/tranade framat-dynamiska
modellen for att direkt hitta sekvensen for levererad fjarrvarme. Hér tranar vi inte nagon ny modell
utan anvander den redan utbildade framatmodellen for att hitta optimala atgarder (optimal
fiarrvarmeleverans).

De initiala data som vi anvander for att trdna den dynamiska modellen (offline-data) kan
vara annorlunda an de data som kontrollanten anvander. Darfor ar det alltid en bra idé
att finjustera framatmodellen ytterligare med de senaste samlade indata (med MPC
kontrollstrategi som ar i fokus i den har etappen).

Forvantat resultat: Optimering av styrsignaler via MPC.

Modelloptimering via hyperparameter-installning och redovisning av API (Application Program
Interface).

For att optimera modellen kan hyperparametrar valjas for att felséka modellen och utfora
felanalyser exempelvis med dveranpassning av data till en felsokningsmodell. Olika
modellkomponenter ska utvdrderas med respektive inputdata for att testa forstarktalgoritmen.
Eventuella problem med datakvalité samt dveranpassning med indata ska l6sas. Dessutom behovs
en API (Application Program Interface) eller en applikation for att dvervaka styrmodeller i realtid
baserad pa nya indata (inklusive bade tréning och testdata).

Kostnadsanalys/Ionsamhetsanalys av olika lagringspotential med hjalp av utvecklade modeller
utvarderas for att hitta vilka I6sningsalternativ for energilagring i byggnaden som ger:

e |agst resursanvdandning — primdrenergi
Lagst miljopaverkan — vaxthusgasutslapp
Hogst termisk komfort

Hogsta Ionsamhet och besparingspotential
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Forvdntat resultat: De styrmodeller som medfor lagst resursanvandning och miljoeffekt genom
effektiv energianvandning i byggnader kommer att presenteras utifran primarenergianvandning
och vaxthusgasutslapp.

En mer detaljerad beskrivning av modellen ar presenterad i Bilaga A: Berdkningsproceduren och
utvecklingen av Al-modellen.

Darutover presenteras det grafiska anvandargranssnittet (GUI) som utvecklats fér modellen i Bilaga D:
Graphic User Interface (GUI) till den presenterade Al modellen.
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5. DISKUSSION

Predikteringar for fjarrvarme (FV) fran den linjara modellen dverensstammer ndra med de uppmatta
fijarrvarme, till skillnad fran prognosberakningar av Al-modellen. Prognosberakningar fran de optimala
energi- och effekt Al modellerna indikerar lagre nivaer av FV jamfort med den linjara modellen, sarskilt
markbart under sen var och tidig host. Denna diskrepans kan orsakas av de linjara
borvardeinstallningar, kant som varmekurvan, som dr inbaddat i installerade varmesystem.
Varmekurvan etablerar en direkt korrelation mellan framledningstemperaturen i varmesystemet och
utomhustemperaturen. A andra sidan har Al-modellen formagan att optimera levererad FV genom att
ta hdnsyn till historiska data av levererad FV, samt inomhus- och utomhustemperaturer.

Som presenterats i Tabell 1 samt Tabell 2 (i Bilaga B), ledde optimeringen av energi och varmeeffekt
med Al-modellen till olika besparingar. Detta kan till en borjan verka motstridigt, med tanke pa att
bada modellerna syftar till att optimera levererad FV och minska effekttoppar. Orsaken bakom denna
diskrepans ligger i metoderna for dalfylinings- och topplastminimeringstekniker (valley filling and peak
shaving) som anviands av energi- och effektmodellen. Aven om dessa tekniker effektivt minskar
topparnai levererad viarme kan de samtidigt leda till en 6kning av energianvandningen under nagra
timmar, eftersom modellen férséker minska topparna och leverera en jamnare FV under kommande
timmar utan att sanka eller hoja innetemperaturen for mycket. Detta intraffar eftersom
varmeforluster ocksa eskalerar under lagringsprocessen, vilket resulterar i en tillfallig héjning av
inomhustemperaturen pa grund av hogre levererad uppvarmning av utrymmen. Figur 1 illustrerar inte
denna fenomen eftersom den foreslagna Al-modellen dven sdnker inomhustemperaturen, i linje med
de angivna installda boérvarden for innetemperaturen, for att spara uppvarmningsresurser. Féljaktligen
minskar Al-modellen bade uppvarmningseffekttoppar och minimerar, det vill sdga optimerar, den
totala FV-leveransen genom att uppratthalla inomhustemperaturen néra de installda bérvardena och
dérmed bibehalla termisk komfort.

Aven om det finns en potentiell 6kning av total energilagring kan de ekonomiska besparingarna i
samband med topptrimning fortfarande vara betydande, sarskilt nar andra energisparatgarder inte
genomfoérs. Kostnadsminskningarna kommer fran besparingar i anvandningen av reservanlaggningar
och antagandet av mindre anlaggningar for att mota toppbelastningar (Vandermeulen et al., 2018).

Den forvantade minskningen av totala utsldpp som resultat av optimering av FV-forsorjning genom
Al-modellen forvantas vara betydande. Dessa paverkningar skulle kunna forstarkas ytterligare om
liknande optimeringar av Al-modeller tillampas pa alla sammanldnkade byggnader inom ett
FV-natverk, vilket undviker behovet av mindre miljovénliga energikallor (for att uppfylla extra behov
vid topplasttimmarna).

Generellt sett &r inomhustemperaturen hogre under arbetstid jamfort med icke-arbetstid, en atgard
som vidtas for att sékerstdlla personalens termiska komfort. Denna temperaturreglering styrs av
specifika installda varden som tilldelats Al-modellen fér underhall avinomhustemperaturen: 21°C
under arbetstid (06:00-18:00) och 18°C under icke-arbetstid (18:00-06:00 pa vardagar samt under
helger och helgdagar). Den studerade byggnaden anvands som kontorsbyggnad och darfér ar dessa
installda varden utformade for att 6verensstamma med de boendes komfortpreferenser under olika
tidsintervall.
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Det ar tydligt att den uppmatta inomhustemperaturen nar sina lagsta punkter under de kallare
vinterdagarna, medan de inomhustemperaturer som férutsags av Al-modellen konsekvent ar cirka 1
grad hogre an de uppmatta vardena. De uppmatta inomhustemperaturerna kan sjunka under 21
grader och paverka personalens termiska komfort under vinterdagarna, medan Al-modellens
forutsdgelser sarskilt ligger runt installda borvarden under arbetstid och icke-arbetstid dven under de
kallaste dagarna i januari och februari. Till exempel kan den férutsedda inomhustemperaturen sjunka
under 21 grader under nagra timmar under arbetstid, men de ar fortfarande 6ver 20 grader enligt
installda borvarden. Dessutom visar den optimala energi- och effektmodellen under hela aret jamnare
inomhustemperaturer jamfort med de uppmatta temperaturerna, dvs. Al-modellens forutsdgelser ar
hogre under de kallaste dagarna pa vintern, medan de uppmatta vardena ibland &r under de installda
vardena, och Al-modellens forutsagelser ar lagre under varen och hosten, jamfort med de uppmatta
temperaturerna. Pa sa satt forsoker Al-modellen att sdtta inomhustemperaturen sa mycket som
mojligt Over de installda vardena och samtidigt optimera leveransen av FV. Dock ar forutsdgelserna
fran den optimala termiska komfort Al-modellen ndrmare de uppmatta FV-férutom under de kallaste
dagarna i januari och februari, eftersom modellen prioriterar den termiska komforten och har striktare
installningar for att halla inomhustemperaturen éver de installda bérvardena.

| den har studien anvands inomhustemperaturer som viktas efter golvyta, och i framtiden kan vi
sarskilja data per omraden som éar i direkt kontakt med utomhusmiljon. En betydande begrdnsning av
Al-modellen uppstar pa grund av bristen pa mangfald i traningsdata. Med tanke pa att data
harstammar fran en kompetent regulator, hamnar inomhustemperaturen framst inom ett snavt
intervall, sarskilt under den kalla delen av aret. Dessutom blir data knapphandig for mycket kalla
utomhusforhallanden, eftersom dessa intraffar en eller ett par dagar per ar, om alls. Foljaktligen star
modellen infér betydande utmaningar nar det géller att gbra precisa forutsagelser nar
inomhustemperaturen forvantas avvika utanfor detta etablerade intervall, sasom férutsagelse av
extremt laga temperaturer.
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6. SLUTSATSER

Denna fallstudie utforskar det innovativa anvandandet av en historisk stenbyggnads stomme som ett
varmebatteri, med anvandning av artificiell intelligens (Al) och maskininldrningsmodeller.
Tillvagagangssattet innebar kontroll av varmetillforsel baserad pa vaderprognoser och predicerad
personnarvaro (arbets- resp. icke-arbetstimmar) for optimering av energianvandning och effektbehov
samtidigt som termisk komfort bibehalls. Studien visar pa betydande besparingar bade vad géaller total
och toppenergianvandning, och tyder pa tillamplighet for liknande fall. Prediktionsmodellen anvander
en uppsattning konvolutiva neurala natverk (Convolutional neural networks) som trdnas genom
overvakad inlarning. Simuleringsresultaten visar potential for besparingar pa 38% och 29% i arlig
fijarrvarme, berdknat av de optimala energi- och effekt-Al-modellerna, vilket visar pa
kostnadsbesparingar p& cirka 46 000 respektive 35000 SEK (22 och 17 SEK/m?) fér den studerade
byggnaden. Samma optimerande energi- och varmeeffekt-Al-modeller kan generera ungefar 23%
minskning av toppvarmeeffekt i medeltal over aret, berdknat per 24 timmar. Vidare utvecklades en linjar
modell (likt den verkliga) for jamfoérelseandamal och denna bidrog till 6kade uppvarmningskostnader
genom att nagot oka behovet av fjarrvarme (FV). Dessutom visades det att Al-modellerna kan minska
de 10 hogsta effekttopparna per timme med cirka 6% for byggnaden.

| termer av miljopaverkan kan de potentiella besparingarna i arlig sparad fjarrvarmeenergi och
effekttoppar leda till minst lika stora besparingar i de totala utsldppen som orsakas av produktion och
leverans av FV, dven om fjarrvarmeproduktion i detta fall ar fran hallbara och férnybara kallor. Den
forvantade minskningen av utslapp genom att optimera FV-leveransen genom Al-modellen skulle vara
annu storre om den tillampades pa alla sammanlankade byggnader i ett FV-natverk, vilket skulle minska
behovet av mindre miljévanliga energiproduktionskallor.

| framtiden kan den féreslagna Al-modellen genomga testning och verifiering genom implementering i
en verklig byggnad, specifikt Radhuset i Géavle, i samarbete med fastighetsdgaren. Vidare skulle
integration i det befintliga fastighetsautomationssystemet mojliggéra datainsamling och
modellprediktioner i realtid. Systemet skulle kunna generera signaler och meddelanden till
fastighetsskdtare och anvdndare, for att uppmana till justeringar av varmesystemen vid
ovantade/odnskade avvikelser i varmestyrningen. Ytterligare parametrar, sasom solstralning, skulle
kunna forbattra modellen om tillforlitliga data fanns tillgangligt. Kanslighetsanalys skulle kunna beddéma
modellens prestanda med och utan dessa extra parametrar. For narvarande anvander modellen
areaviktad inomhustemperatur for att utveckla forutsagelser, med resultat som representerar
fiarrvarme for hela byggnaden, centralt styrd av fjarrvarmevaxlaren. Framtida utveckling av modellen
skulle kunna utvidga dess prestanda till att styra inomhustemperaturer i enskilda rum, forutsatt att varje
rums radiator ar utrustad med fjarrstyrd termostat for separat temperaturreglering. | framtiden kan
presenterad Al-modell ha tillampningspotential att utvecklas for att ansluta flera byggnader inom ett
distrikt och dven 6ver hela fjarrvarmenatet for att optimera FV-leveransen. Vidare erbjuder integration
av FV-natverket med elndtet mojligheten att synkronisera och optimera hela energisystemet, inklusive
olika lagringssystem, bade termiska och elektriska.
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Bilaga A: Berakningsproceduren och utvecklingen av Al-modellen

Inom projektet utvecklades olika maskininlarningsalgoritmer inklusive avancerade
djupinlarningsmetoder for att tréna modellerna med insamlade data. Malet var att optimera
fjarrvarmeleverans (minskad energianvdandning och toppeffekter) och samtidigt uppratthalla en
bekvam inomhustemperatur (termisk komfort) hos en kulturhistorisk vardefull byggnad. Genom att
identifiera sekvenser av framledningstemperaturer, vilka minimerar levererad varme med laga
toppeffekter samtidigt som inomhustemperaturen halls 6ver bérvarden under de kommande 48
timmarna med prognostiserat vader (utetemperaturer). Tillvdgagangssattet illustreras i figur 2 och
omfattar tre nyckelkomponenter: en generativ modell (conditional Variations Auto-Encoder, cVAE), en
prediktionsmodell (Dynamic model) och en optimerare (Optimizer). Den generativa modellen
genererar olika sekvenser av framledningstemperaturer hos varmevattnet, som distribueras till
radiatorsystemet och eftervdarmning av tilluft, med hansyn till historiska data. Prediktionsmodellen
forutsdger inomhustemperaturer baserat pa olika laster (kalender, dygnsscheman och
bértemperaturer), inklusive framledningstemperaturer och prognostiserade utomhustemperaturer.
Slutligen utnyttjar optimeraren den genererade sekvensen for att hitta optimala
framledningstemperaturer, vilket medfor effektiv styrning av fjarrvarmetillférseln for forbattrad
termisk komfort och energioptimering. Darutdver utvecklades en grundldggande linjar modell for
jamforelsedndamal; denna modell avspeglar hur varmetillférseln i den studerade byggnaden styrs i
dagens lage.

Dynamic Model
(prediction model)

Indoor temp (past) \

Outdoor temp (past) (_\
DH (past)

Supply temp (past)

CNN 1

> CNN 2

Outdoor temp

Weather forecast
(future)

ndoor temp
(future)

Supply Temp

Optimizer Generative Model Harme)

CNNn
A

Figur 2: Schematisk illustration av Al-modelleringsmetoden som anvands for predikterad
fjarrvarmetillforsel och innetemperaturer.

Nertill framgar detaljerade beskrivningar av de ingdende komponenterna.

Dynamic model (Prediktionsmodell)

Prediktionsmodellen tar in byggnadens inomhus- och utomhustemperaturer samt levererad FV och
framledningstemperaturer under de senaste timmarna (i simuleringarna satt till 7 dygn men kan anta
andra varden), tillsammans med prognostiserade utomhustemperaturer och predikterade
framledningstemperaturer hos varmevatten for de kommande 48 timmarna. Utdata fran
prediktionsmodellen ar den predikterade inomhustemperaturen och fjarrvarmen for ndsta timme.
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Modellen beaktar dven eventuella begrdansningar och borvarden som tilldelats
inomhustemperaturinstallningar, 21°C under arbetstid (kl 06:00-18:00) och 18°C under icke-arbetstid
(kl 18:00-06:00 under vardagar och alla timmar under helger och helgdagar). | bada fallen tillats
temperaturen understiga borvardena med maximalt 1 grad nagra timmar under de kallaste
vinterdagarna. Vidare bor den férutsagda FV aldrig bli negativ, och den lagsta
framledningstemperaturen ar satt till 18°C enligt den egentliga varmekurvan. Maximala
framledningstemperaturen ar installd pa 93°C enligt uppmatt data.

Prediktionsmodellen bestar av en ensemble av konvolutionella neurala natverk (Convolutional Neural
Networks, CNN), vardera bestdende av totalt 5 lager; tre 1D-convolutional-lager fljt av tva fullstandigt
anslutna lager. Den tranas genom 6vervakad inlarning och anvander medelkvadratfelet (MSE) som
forlustfunktion. Att anvanda en ensemble av modeller ar vanligt inom maskininlarning, dar flera
individuella modeller, oftast av samma typ (i det hér fallet flera CNN-modeller), kombineras for att
bilda en enhetlig och mer robust prediktionsmodell. Denna kombination ger en spannvidd av resultat
som kan sammanfattas genom tekniker sdsom genomsnittbildning, omrdstning eller viktad
genomsnittshildning (Sollich & Krogh, 1995).

Ensemblens utdata ger en foérestallning om sannolikheten eller tillforlitligheten hos
forutsagelsen/predikteringen. Detta beror pa att ensemblen kombinerar predikteringar fran olika
individuella CCN modeller, dér var och en har sina egna styrkor och svagheter, och denna mangfald
gor att ensemblen kan fanga upp olika aspekter fran indatadistributionen/-férdelningen. Darmed ger
ensemblen en bred utdata for bedémning av osdkerheter och ge probabilistiska uppskattningar hos
varje prediktion. Detta ar sarskilt vardefullt i beslutsprocesser dar att ha en tillforlitlig matning tillater
oss att fatta beslut med ett mer informativt underlag, vilket beaktar potentiella osdkerheter och
tillforlitligheter hos modellens prediktioner i olika scenarier.

Varje CNN i ensemblen trdnas separat genom att sampla datapartier (batches) ur traningsdatasetet.
Modellens parametrar optimeras sedan med stokastisk gradientnedstigning (SGD) dver de samlade
datapartierna (batches). SGD optimerar globala forlustfunktionen hos CCN, dvs hur mycket modellens
prediktion avviker frdn motsvarande matvarden, i form av MSE, for att faststélla modellparametrarna.

Generative model (Generativ modell)

Anvandningen av data fran den generativa modellen gor det maojligt for optimeraren att fa indata fran
prediktionsmodellerna som ar tillférlitlig och undviker data som ligger utanfor en férdelning som kan
forhindra korrekta predikteringar. Dessutom sakerstaller optimeraren en tillforlitligare leverans av
temperaturutdata till byggnaden genom att ndra anpassa dem med tidigare levererade varden. Den
generativa modellen ar en villkorlig variationsautokodare (conditional Variational Autoencoder, cVAE)
som genererar en sekvens av framledningstemperaturer, beroende av en given variabel (i det har
fallet temperaturvarden for framledningen och en slumpmassigt utvald latent vektor fran en
normalférdelning). Villkorliga indata inkluderas for att bibehalla kontinuiteten mellan
temperaturvardena vid olika tidpunkter. Det ar viktigt att notera att de latenta variablerna inte har
nagon fysisk betydelse; de fungerar helt enkelt som indata till den generativa modellen for att
generera olika sekvenser.
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Optimizer (Optimerare)

Optimeraren syftar till att hitta en optimal sekvens av framledningstemperaturer for att bibehalla
inomhustemperaturen inom ett angivet intervall, fraimst genom boérvarden som inte eller endast
tillfalligt kan underskridas. Dessutom minimeras medel- och maximala FV-varden som sekundéara mal
for att spara energi, effekttoppar och darmed minska kostnader. Hoga FV-varden, dven under korta
perioder, kan vara kostsamma, sa det ar viktigt att i mojligaste man minska bade medelvarden och
toppvarden (effekt). Slutligen laggs en straffterm till som ett matt pa oenighet i utdata fran de
dynamiska modellerna i ensemblen. Sammanfattningsvis har optimeraren tre mal, dvs. att minimera:
(1) medelvardet for den levererade fjarrvarmen, (2) det hogsta vardet (topplasteffekt) for fjarrvarmen,
och (3) osdkerheten hos prediktionen fran den dynamiska modellen.

Optimeringen utfors med hjalp av “random shooting” genom den generativa modellen. Ett stort antal
latenta varden (t.ex. 1000) véljs slumpmassigt fran standardnormalférdelningen. Dessa prover skickas
sedan till den generativa modellen, som genererar sekvenser av framledningstemperaturer.
Sekvenserna utvarderas sedan med hjilp av prediktionsmodellen for att berdkna kostnaden
("straffet”) for varje sekvens baserat pa en malfunktion. Sekvensen med lagst kostnad betraktas som
de optimala FV-vardena for de kommande timmarna. Optimeringsprocessen kan utféras pa en timme
eller gradtimme basis, beroende pa frekvensen for justeringar av
framledningstemperatursekvenserna.

Piece-wise linear model (Styckvis linjar modell)

For att utvardera effektiviteten hos det foreslagna neurala natverksansatsen implementerades en
styckvis linjar modell som kartlagger utomhustemperaturen gentemot den levererade fjarrvarmen,
optimerad genom stokastisk gradientnedstigning (SGD). Optimeringen utférs genom att kdra SGD pa
alla datapartier (batches) som samplats ur hela traningsdatasetet.



24

Bilaga B: Fortsattning av resultat

Tabell 2 presenterar data for uppmatta, linjara modellens och Al-modellernas predikteringar for arlig
uppvarmning av utrymmen (inklusive tappvarmvatten) och sparade (kapade) effekttoppar.
Fjarrvarmedata har métts och simulerats per timme, vilket innebar att enheten ar kWh for
uppvarmning och kWh/h for effekttopparna. Den arliga fjarrvarmeenergitillforseln har berdknats per
timbasis. For att uppskatta sankningen av varmeeffekt har denna berdknats utifran de maximala
dagliga topparna hos fjarrvarmen (kWh/h) per dygn (24 timmar), och besparingen ar skillnaden mellan
Al-modellens prediktering och den levererade (uppmatta) fjarrvarmen. For att ytterligare analysera
minskning av effekttoppar har 2021 ars tio-i-topp toppeffektbehov per timme (kWh/h) sammanstallts
for de olika fallen.

Priset for Gavle Energi’s fjarrvarmesystem ar satt till 0,526 svenska kronor per kWh tillsammans med
vissa fasta avgifter for ar 2024 (Gavle Energi, n.d.-b). Féljaktligen, enligt minskningen av arlig
energianvandning (kWh) och effekttoppar (kWh/h) som presenteras i Tabell 2, kan Al
optimeringsmodellerna for energi- och effekt méjliggdra ungefar 38 respektive 29% minskning av
uppvarmningen, vilket potentiellt kan sanka varmekostnaderna med cirka 46 000 respektive 35 000
svenska kronor. Samma Al -modeller kan minska toppeffekten med cirka 23% beraknad per 24
timmar. Det ar vart att notera att den linjara modellen kan marginellt 6ka FV-behovet nagot, vilket
leder till en 6kning av varmekostnaderna. Vidare inkluderar tabellen resultat for de 10 hogsta
effekttimmar, vilket visar en 6kning for den linjara modellen nar det galler toppeffekten, medan Al-
modellerna kan minska de hogsta topparna med cirka 6%. Al-modellen for optimal varmeeffekt for
uppvisar en nagot hogre potential for att kapa toppar, namligen 7%.

Figur 3 visar tidsserier for bade uppmatt och predikterat FV, tillsammans med utomhustemperaturer.
Tidsserierna omfattar 24-timmars medelvarden och maximala FV-varden per dygn, tillsammans med
24-timmars medelvarden av utomhustemperaturdata for hela aret, samt diagram for de kalla
manaderna januari och februari. Al-modellens predikteringar omfattar resultat fran nar modellen ar
optimerad for termisk komfort, minskad energianvandning och varmeeffekt. Dessutom tillkommer for
jamforelsedndamal predikterad resultat fran den linjara modellen. Generellt sett ar hogre toppar
markbara under perioder med lagre utomhustemperaturer, men det framgar att linjara modellen
uppvisar storst varmeeffektbehov, féljt av uppmatta varden och sedan Al-modellens resultat. Utdver
reducerad effekt minskar energianvandningen, vilken motsvarar den totala arean under respektive
kurva. Dessutom belyser resultaten den linjara modellens oformaga att svara pa utetemperaturens
dynamik, vilket begransar dess férmaga att justera och prediktera optimal FV-anvandning.
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Tabell 2: Arligt uppmitt och beraknat fjarrvarme (FV) (kWh) och effekttoppar (kWh/h)

Energi (kWh) eller

Energi eller effekttoppar

for effekt (kwh/h)

effekttoppar (kWh/h) per levererad FV (%)
Arlig uppmatta FV, ar 2021 (kWh) 233238 100,0
Arlig FV - linjar modell (kWh) 238 624 102,3
Arlig FV - Al-optimal modell for termisk komfort 999 691 95 5
(kwh)
Arlig FV - Al-optimal modell fér energi (kWh) 145 364 62,3
Arlig FV - Al-optimal modell for effekt (kWh) 166 517 71,4
Arlig sparad energi (FV) - linjar modell (kwh) -5 386 -2,3
Arlig sparad energi (FV) - Al-optimal modell for
termisk komfort (kWh) 10547 4>
Arlig s_parad energi (FV) - Al-optimal modell for 87 874 377
energi (kwh)
Arlig sparad energi (FV) - Al-optimal modell for
effekt (kwh) 66721 28,6
Arlig uppmitta toppeffekt per 24 timmar, ar 2021
(kWh/h) 11 963 100,0
Arlig sparad toppeffekt per 24 timmar - linjar
modell (kWh/h) 1058 88
Arlig sparad toppeffekt per 24 timmar - Al-optimal 403 34
modell for termisk komfort (kWh/h) ’
Arlig sparad toppeffekt per 24 timmar - Al-optimal
modell fér energi (kWh/h) 2735 22,9
Arlig sparad toppeffekt per 24 timmar - Al-optimal
modell for effekt (kWh/h) 2745 22,9
Topp 10 uppmatta toppeffekt per timme, ar 2021
(kwh/h) 76,7 100,0
Topp 10 toppeffekt per timme - linjar modell
(kWh/h) 78,7 102,6
Topp 10 toppeffekt per timme - Al-optimal modell 770 939
for termisk komfort (kWh/h) ’ !
Topp 10 toppeffekt per timme - Al-optimal modell
for energi (kWh/h) e S
Topp 10 toppeffekt per timme - Al-optimal modell 712 92.9
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Figur 3: Till véinster visas 24-timmars genomsnittliga och maximala fjarrvarmeforsorjningsdata,
tillsammans med 24-timmars genomsnittlig utomhustemperatur (Tout) for hela 2021. Till héger visas
figurerna samma data men specifikt for januari och februari.
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Byggnads energisignatur

| Figur 4 presenteras energisignaturen for den levererade FV i férhallande till utomhustemperaturen for
dygnsmedelvarden under 2021, fér de tre optimerade Al-modellerna, uppmatt FV och den linjara
modellen.
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Figur 4: Energisignaturdiagram for den levererade fjarrvarmen for uppvarmning och varmvatten i den
studerade byggnaden. Punkterna representerar levererade FV per dygn och dygnsmedel
utetemperaturer under 2021.

De horisontella linjerna som visas i Figur 4 motsvarar det ndstan konstanta tappvarmvattenbehovet
inklusive VVC-forluster, vilket forblir relativt stabil under dret. De sluttande linjerna representerar framst
okande behov av uppvarmning av utrymmen, vilket korrelerar med sjunkande utomhustemperaturer.
Sarskilt visar Al-modellerna fér optimal energianvandning (minimera FV-leveransen) och optimal
varmeeffekt betydligt lagre varden, vilket tyder pa effektiv reglering av den levererade FV for
uppvarmning av utrymmen, i jdmforelse med den optimala termiska komfortmodellen. Den optimala
termiska komfortmodellen syftar till att prioritera termisk komfort och lagger storre vikt vid att bibehalla
inomhustemperaturerna nara angivna instéllda nivaer, vilket resulterar i mindre potential for
energibesparingar med denna modell. | alla fall &r resultaten fran den linjdra modellen narmare de
uppmatta data, eftersom den aktuella varmeleveransen bestdms genomgenom en linjar reglerkurva
med viss dampningsformaga.

Balanstemperaturen (Tb) ar i Figur 4 den utetemperatur dar lutande linjen skédr den horisontella linjen.
Tb anger den temperatur vid vilken ingen extern uppvarmningsforsorjning kravs for att uppratthalla
termisk komfort inom byggnaden; med andra ord racker interna varmekallorna for att uppratthalla
inomhustemperaturen vid lampliga nivaer. Resultaten avslojar att en lagre Th erhalls fran Al-modellen
nar den optimera for energianvandning och effektminskning, vilket indikerar stérre potential for
besparingar med dessa modeller i jamforelse med optimering for termisk komfort och den linjara
modellen. En ldgre balanstemperatur innebar att varme behover forst tillféras vid en lagre
utetemperatur, vilket i sin tur resulterar i lagre FV-behov for att uppratthalla inomhustemperaturen
inom onskade nivaer.



Bilaga C: Detaljerad kostnadsanalys

Tabell 3: Kostnadsanalys resultat fér olika modeller
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FV for Al-modell  FV for Al-
FV for Al-modell  fér optimal modell for
FV-linjar for optimal energianvand- optimal
uppmatt FV) modell termisk komfort  ning effekt
K vid -9,8 °C, under
mandagen den 2021-12-27 33 33 27 32
Kapacitetsavgift (kr) 29 668 29568 23835 28173
Sasongsuppdelat energipris
2024 (kr) 111 456 106 076 70750 80 832
Volymavdrag (kr) -8 163 -8 163 -8 163 -8 163
Totalt (kr) 132961 127 481 86 422 100 841
Besparing (% av totalt FV
faktiskt kostnad) -0,4% 3,7% 34,7% 23,9%
Tabell 4: Kostnadsanalys detaljerade berékningar for olika modeller baserad pa Gavle Energi FV
avgifter 2024

Kapacitetspris 2024
Kapacitetsavgift = K x KP
K = Kapacitetsbehov vid -10 grader (=24*dygnmedel)
KP = Kapacitetspris = 37,12 kr/kWh. 37,12
Sasongsuppdelat energipris 2024
Vinterpris (januari — mars, november — december) 503,4 kr/MWh. 503,4
Var-/hostpris (april — maj, september — oktober) 431,7 kr/MWh. 431,7
Sommarpris (juni — augusti) 165,2 kr/MWh. 165,2
Volymavdrag 2024
Om fjarrvarmeforbrukning ar stérre an 100 MWh gors ett avdrag pa priset varje manad enligt
tabellen nedan. Prisavdrag
0-100 0 kr/MWh
101 -250 35 kr/MWh
251 -500 55 kr/MWh
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Graphic User Interface (GUI)

Introduction

This document introduces the Graphic User Interface (GUI) for the developed
Python based Al-powered solution for district heating optimization. The software
consists of five tabs that are explained in details here.

1-Parameters

The parameters tab shown below enables the user to set different parameters
such as path to the training data and model parameters. In this section, you can
find a detailed description for each parameter.

B! District Heating Optimization — O x
1-Parameters 2-Optimize 3-Train 4-Prediction 5-Linear Model
Models Path |data/mode|s/h168-[]-p48 ‘ Open

VAE Maodel Path ‘data/models/h16S—O—p48fvaeflat5.mdl ‘ Open

Data Path |data/data.csv ‘ Open

Device ‘cpu

Number of Models ‘5\ VAE Latent Size |5 VAE beta |0.003

Length of History {168 Length of Missed Data |0 Length of Prediction 48

Datasets are created successfully. Train and test sizes: 1, 0

Parameters set

Vae model loaded successfully

data/models/h168-0-p48/ 1.mdl | 2.mdl | 3.mdl | 4.mdl | 5.mdl | successfully loaded.
Optimizer found a solution with costs: [energy: 1098.13, std: 228.80, peak: 33.04]
Deploy results stored at data\deploy_results.csv

Set to Default Save Parameters

Models Path: The path to the ensemble of fully trained convolutional neural
networks (CNNs). The path should include a number of files with filenames
starting from “..mdl’ up to ‘IN.mdl’, where NN is the number of models in the
ensemble. By default, the software is provided with a number of trained CNN
models.
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VAE Model Path: The path to the trained variational auto-encoder (VAE) model. By
default, the software is provided with a trained VAE model.

Data Path: The path to the training data. The data format should be ".csV’, and it
should include date, outdoor temperature, indoor temperature, supply
temperature, and district heating (dh) columns as shown below. These data
serves as the training data to train the model. Also, the data can be used

A B (& D E
1 |date .Ioutdoor indoor supply dh
2 |2020-11-18-00 9.3 20.05627082 40.1 20
3 |2020-11-18-01 9.2 20.04125369 39.97 21
4 |2020-11-18-02 8.8 20.01357823 40.76 24
5 |2020-11-18-03 7.6 20.0089603 41.84 25
6 [2020-11-18-04 6.8 20.01560362 42.79 25
7 |2020-11-18-05 7 20.01968007 43.26 25
8 |2020-11-18-06 7 20.03738833 43.66 27
9 2020-11-18-07 6.6 19.95495611 43.97 27
10 |2020-11-18-08 8.1 19.94363225 43.67 27
11 |2020-11-18-09 9.2 19.976745 43.08 25
12 12020-11-18-10 9.8 20.08366288 41.81 22
13 |2020-11-18-11 10.2 20.10159835 40.51 22
14 |2020-11-18-12 10.8 20.11726573 40.06 21
15 12020-11-18-13 11.6 20.12501835 39.17 19
16 |2020-11-18-14 12.3  20.1233183 38.18 16
17 |2020-11-18-15 12.4 20.13737151 36.69 15
18 12020-11-18-16 12.7 20.12128514 35.42 15
19 |2020-11-18-17 12.2 20.09582825 34.88 12
20 2020-11-18-18 11.6 20.12897342 34.76 14
21 12020-11-18-19 11.1 20.09166163 35.32 16
22 2020-11-18-20 11.4 20.02904303 36.23 16
23 2020-11-18-21 11.5 20.00299608 36.81 15
24 12020-11-18-22 11.6 19.97238769 36.51 15
25 2020-11-18-23 11.3 19.92888433 36.26 15
26 2020-11-19-00 11.8 19.88661019 36.37 16
27 12020-11-19-01 11.1 19.86672675 36.34 15
28 2020-11-19-02 10.3  19.8543411 35.9 17
29 2020-11-19-03 10 19.82544952 37.33 20
30 12020-11-19-04 10.1 19.81071838 38.53 19
31 2020-11-19-05 10.2 19.79889448 38.76 19
32 2020-11-19-06 9.5 19.79900032 38.93 19
33 12020-11-19-07 9 19.69564252 38.86 24
34 2020-11-19-08 9.3 19.66193278 40.12 24
35 2020-11-19-09 4.7 19.67289262 40.19 24
36 12020-11-19-10 3.1 19.70548254 40.2 31
37 12020-11-19-11 2.8 19.75116222 39.12 49

Device: This is the device used to train the models (the ensemble of CNN models
and the cVAE model)

Number of Models: The number of CNN models in the ensemble of models.

VAE Latent Size: The number of dimensions in the latent space of the cVAE model
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VAE beta: The 3 parameter in the cVAE objective function which is used to
balance the reconstruction loss against the Kullback-Liber (KL) divergence loss.

Length of History: The number of past hours for which the input data is provided
to the model to make prediction about the future. The length of history is denoted
by H.

Length of Missed Data: The number of recent hours for which the input data is
missing. This feature is used in cases where it is practically impossible to provide
the most recent input data to the model. Otherwise, this parameter must be set to
zero.

Length of Prediction: The number of future hours for which the model makes
prediction.

Set to Default: This button is used to set the parameters to their corresponding
default values.

Save Parameters: This button is used to save the current parameters into a file.
The saved parameters are restored next time the program is starting.

2-Optimize

The optimization tab is the main tab used to find a sequence of supply
temperature values as the control signal to keep the indoor temperature within the
comfort range while minimizing some notions of energy consumption.

There are two functionalities implemented in the optimization tab:

1. Optimize: In this case, a random set of the training data is used to analyze the
output of the model. Here, the output of the model is compared with two other
outputs: (1) the actual data provided by the data (the ground truth), and (2) the
output of a piece-wise linear model whose parameters are optimized in
another tab (5-Linear Model) described later in this document. The inputs to
the optimization problem are stored in an excel file named “optim_inputs.csv”,
and the outputs of all three options are stored in another excel file named
“optim_results.csv”. Also, the results are displayed visually by the program as
shown in the following figure.
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B | District Heating Optimization - O X

1-Parameters 2-Optimize 3-Train 4-Prediction 5-Linear Model

Temperature Low ‘21.0 | Temperature Low Weekend |19.0 ‘ Temperature High ‘25.0
Objectives: DH sum [1.0 | oH std [0.1 | DH max [10.0
Path to Deploy Data ‘dala/deploy_inpuls.csv ‘ Open
Path to Save Solution ‘data ‘ Open
Optimize Deploy
40 4 optimal dh
actual dh
201 linear model
0+ T
0
214 ™" optimal indoor temp

—— actual indoor temp
204 - linear m. indoor temp "= =====ea__

T
o

——- optimal supp temp
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T T T T T
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Datasets are created successfully. Train and test sizes: 12709, 508

Parameters set

Vae model loaded successfully

data/models/h168-0-p48/ 1.mdl | 2.mdl | 3.mdl | 4.mdl | 5.mdl | successfully loaded.
Optimizer found a solution with costs: [energy: 318.18, std: 96.82, peak: 19.99]
Baseline run succeeded!

Optimization results stored at data\optim_results.csv

Set to Default Save Parameters

2. Deploy: This mode of operation is used to find an optimal solution in real case
scenarios in which only input values are available to the model. The inputs
should be provided as an excel file. The program opens the inputs and
processes them using the models and provides the optimal outputs both
visually and also as an output excel file named “optim_results.csv”. An
example input excel file accompanies the software at the following directory:
“data/deploy_inputs.csv”. The following is a snapshot of an example output
provided by the deploy functionality:
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B | District Heating Optimization - O X

1-Parameters 2-Optimize 3-Train 4-Prediction 5-Linear Model

Temperature Low ‘21.0 | Temperature Low Weekend |19.0 ‘ Temperature High ‘25.0
Objectives: DH sum 1.0 | bH std [o.1 | DH max [10.0
Path to Deploy Data ‘data/deploy_inputs.csv ‘ Open
Path to Save Solution ‘dala ‘ Open
Optimize Deploy
30 4 optimal dh
20 4
T T T T T
20.00 o L = 10 0 0 -
==~ predicted indoor temp *~ P
19.75 - ST RN, LT Sl e
1 S~ - SeemeemTTT T el
19.50 \\\ e She-
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—_— s ~< P TN \ -
‘‘‘‘‘ —_/‘ ‘-\‘ 1 \\ "—’
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Datasets are created successfully. Train and test sizes: 1, 0

Parameters set

Vae model loaded successfully

data/models/h168-0-p48/ 1.mdl | 2.mdl | 3.mdl | 4.mdl | 5.mdl | successfully loaded.
Optimizer found a solution with costs: [energy: 1098.13, std: 228.80, peak: 33.04]
Deploy results stored at data\deploy_results.csv

Set to Default Save Parameters

The followings provide some detailed description about the parameters which can
be set in the optimization tab.

Temperature Low: This is the minimum acceptable indoor temperature for the
model to produce. Supply temperatures as the output of the optimization process
for which the ensemble model predicts lower temperatures than this threshold are
discarded by the program.

Temperature High: This is the maximum acceptable indoor temperature for the
model to produce. Supply temperatures as the output of the optimization process
for which the ensemble model predicts higher temperatures than this threshold
are discarded by the program.

Objectives: The objective function is constructed by the weighted sum of three
terms which are defined below.

DH sum: This is the weight of the DH sum objective. The DH sum objective is the
integral (sum) of the predicted DH values for the prediction horizon.
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DH std: This is the weight of the DH std objective. The DH std objective is the
standard deviation of predicted DH values across the models in the ensemble
averaged over the prediction horizon.

DH max: This is the weight of the DH max objective: The DH max objective is the
maximum predicted DH value over the prediction horizon.

Path to Deploy Data: This is the path to find the inputs (data) to the model for the
deploy mode.

Path to Save Solution: This is the path to store the solution found by the model at
both the deploy and optimization modes.

Optimize: The button to run optimization.

Deploy: The button to run deployment.

3-Train

This tab is used to the train the ensemble of CNN models and the cVAE model.

B | District Heating Optimization — O X

1-Parameters 2-Optimize 3-Train 4-Prediction 5-Linear Model

Learning Rate ‘0.001\ Number of Epochs 10000 Batch Size 500

Path to Save Models ‘dala/mudels/newﬁmadels Open

Train Models Train VAE

Datasets are created successfully. Train and test sizes: 1, 0

Parameters set

Vae model loaded successfully

data/models/h168-0-p48/ 1.mdl | 2.mdl | 3.mdl | 4.mdl | 5.mdl | successfully loaded.
Optimizer found a solution with costs: [energy: 1139.57, std: 189.27, peak: 42.47]
Deploy results stored at data\deploy_results.csv

Set to Default Save Parameters
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Learning Rate: The learning rate which is used by the stochastic gradient descent
method to optimize the parameters of the neural networks.

Number of Epochs: The number of epochs to train the parameters of the neural
networks. In each epoch, the parameters are updated using the entire data in the
training dataset.

Batch Size: The size of batch sampled from the training dataset at every
optimization step.

Path to Save Models: The path to save the newly trained models.

Train Models: The button to initiate training of the CNN models. The number of
CNNs trained are determined by the size of the ensemble.

Train VAE: The button to initiate training of the cVAE model.

4-Prediction

The prediction tab is used to evaluate the trained models (CNN models) at
predicting a sequence of future indoor temperatures provided some inputs. The
program also facilitates analyzing sensitivity of the model output w.r.t. each input
by increasing and decreasing the input values by some percentages and
predicting the outputs of the model. The model predicts three outputs: (1) the
output for the original inputs, (2) the output for the increased inputs (displayed by
red color), and (3) the output of the decreased inputs (displayed by blue color).

Graphic User Interface (GUI)



./ District Heating Optimization - [m] X
1-Parameters 2-Optimize 3-Train 4-Prediction 5-Linear Model
Decrease Supply Temp (%) ‘—10.0 | Increase Supply Temp (%) ‘10.0
Decrease Past Indoor Temp (%) ‘0.0 | Increase Past Indoor Temp (%) ‘0.0
Decrease Outdoor Temp (%) ‘0.0 | Increase Outdoor Temp (%) ‘0.0
Decrease DH past (%) ‘0.0 | Increase DH past (%) ‘0.0
Make A Prediction Prediction Error
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Datasets are created successfully. Train and test sizes: 1, 0
Parameters set
Vae model loaded successfully
data/models/h168-0-p48/ 1.mdl | 2.mdl | 3.mdl | 4.mdl | 5.mdl | successfully loaded.
Optimizer found a solution with costs: [energy: 1139.57, std: 189.27, peak: 42.47]
Deploy results stored at data\deploy_results.csv
Set to Default Save Parameters

Decrease Supply Temp (%): The percentage to decrease the input supply
temperature.

Increase Supply Temp (%): The percentage to increase the input supply
temperature.

Decrease Past Indoor Temp (%): The percentage to decrease the past indoor
temperature as the input to the model.

Increase Past Indoor Temp (%): The percentage to increase the past indoor
temperature as the input to the model.

Decrease Outdoor Temp (%): The percentage to decrease the outdoor
temperature as the input to the model.

Increase Outdoor Temp (%): The percentage to Increase the outdoor temperature
as the input to the model.
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Decrease DH Past (%): The percentage to decrease the past DH as the input to
the model.

Increase DH Past (%): The percentage to Increase the past DH as the input to the
model.

5-Linear Model

This tab is used to optimize and display a piece-wise linear model used as the
baseline for our analysis. The piece-wise linear model relates the outdoor
temperature to the delivered DH via the following equation:

DH = ReLu(wt + b) + ¢,

where, ReLu(z) is equal to  where > 0, and zero elsewhere. t denotes the
outdoor temperature, and w, b, ¢ are the weight, bias and offset parameters which
are tuned by the optimization process.

The supply temperature is found as a linear function of DH inputs.
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7 District Heating Optimization

1-Parameters 2-Optimize 3-Train 4-Prediction 5-Linear Model

Linear Madel: DH Offset |1.2155 Linear Weight |-2.4474 Linear Bias |40.7685
Supply Temp Linear Weight ‘0.6814 Linear Bias |26.7221
Number of Epochs ‘500

Display Linear Model Optimize Linear Model
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Datasets are created successfully. Train and test sizes: 1, 0

Parameters set

Vae model loaded successfully

data/models/h168-0-p48/ 1.mdl | 2.mdl | 3.mdl | 4.mdl | 5.mdl | successfully loaded.
Optimizer found a solution with costs: [energy: 1139.57, std: 189.27, peak: 42.47]
Deploy results stored at data\deploy_results.csv

Set to Default Save Parameters

Piece-wise linear model parameters:
DH offset: The offset parameter of the piece-wise linear function.
Linear Weight: The weight parameter of the piece-wise linear function.

Linear Bias: The bias parameter of the piece-wise linear function.

Supply Temp Linear Weight: The weight parameter of the linear function.

Linear Bias: The bias of the linear function.

Number of Epochs: The number of epochs to update the parameters of the linear

models. In each epoch, all data in the dataset are used.
Display Linear Model: The button is used to display the linear model.

Optimize Linear Model: The button is used to optimize the linear model.
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