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FÖRORD 
 

Spara och bevara är ett forsknings- och utvecklingsprogram som Energimyndigheten initierat för att 
öka kunskapen om energieffektivisering i kulturhistoriskt värdefulla byggnader. Programmet syftar 
till att utveckla och förmedla kunskap och tekniklösningar som bidrar till en energieffektivisering i 
dessa byggnader utan att deras värden och inventarier förstörs eller förvanskas. 

Den varsamma energieffektiviseringen ska uppnås genom interdisciplinära samarbeten, där teknik 
möter kulturvård. Målet är att skapa en bestående kunskapsgrund inom området 
energieffektivisering i kulturhistoriskt värdefulla byggnader och bidra till en långsiktig, hållbar 
förvaltning av det äldre fastighetsbeståndet.  

Programmet samordnas av Uppsala universitet. 

Rapporten redovisar projektets resultat och slutsatser. Publicering innebär inte att 
Energimyndigheten eller Uppsala universitet tar ställning till framförda slutsatser, resultat eller 
eventuella åsikter. 
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SAMMANFATTNING 
Historiska byggnader står för en betydande del av dagens byggnadsbestånds energianvändning, 
samtidigt som energibesparande åtgärder på dessa är begränsade av regelverk kring kulturellt 
bevarande, antikvariska och estetiska skäl. Den del av byggnadsbeståndet som byggts före 1945 står 
för cirka 20 procent av all energianvändning i Sveriges byggnadsbestånd. Syftet med denna studie är 
att utvärdera användningen av byggnadsstommen i en specifik historisk stenbyggnad som ett 
värmelager. Det innebär att termisk energi lagras i byggnaden utan att den fysiskt förändras. Genom 
att använda artificiell intelligens (AI) och maskininlärningsmodellering kan värmeförsörjningen styras 
med hjälp av väderprognoser och förväntad närvaro (binär kalenderisering) av kontorspersonalen i 
byggnaden. Detta möjliggör optimering av energianvändning och effektbehov samtidigt som 
inomhustemperaturen hålls inom komfortgränserna. Projektet strävar efter att utvärdera 
energilagringspotentialen för att främja effektivare energianvändning i historiska byggnader genom 
energisimuleringar. Den genomförda studien indikerar betydande besparingar i total och spetsenergi 
för den undersökta byggnaden och tyder på att metoden kan tillämpas på andra liknande fall.  

Nyckelord: Fjärrvärme, Djupinlärning, Artificiell intelligens (AI), Historisk byggnad, Energilagring, 
Termisk massa, Topplastminimering (peak shaving), Komfort 
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Abstract  
Historical buildings account for a significant portion of today's building stock energy use, with usually 
limited energy-saving measures feasible due to by cultural conservation rules and preservation 
aspects in building regulations. The part of the building stock that was built before 1945 accounts for 
approximately 20 percent of all energy use in the Swedish building sector. The purpose of this study is 
to evaluate the use of the building structure in a specific historical stone building as a heat storage 
system. This involves storing thermal energy in the building's structures without physically altering 
them. By utilizing artificial intelligence (AI) and machine learning modeling, heat supply can be 
controlled using forecasts of weather and binary calendarization of occupancy. This enables 
optimization of energy usage and power demand while maintaining adequate indoor temperatures. 
The project aims to assess the energy storage potential to promote more efficient energy use in 
historical buildings through energy simulations. The conducted study indicates significant savings in 
both total and peak energy for the examined building, and suggests that the method could be applied 
to other similar cases.  

Keywords: District heating, Deep learning, Artificial Intelligence (AI), Historical building, Thermal mass, 
Energy Storage, Peak shaving, Thermal comfort 
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1. INLEDNING OCH BAKGRUND 
 
1.1 BAKGRUND 
Många av våra kulturhistoriskt värdefulla byggnader används idag som bostäder, kontorslokaler, 
muséer, skolor mm och behöver därför förses med komfortabel innetemperatur. Den del av 
byggnadsbeståndet som byggts före 1945 står för cirka 20 procent av all energianvändning i landets 
byggnadsbestånd. Möjligheterna att energieffektivisera kulturhistoriska byggnader är samtidigt 
begränsade på grund av bevaranderegler (varsamhetskrav och förvanskningsförbudet). Oftast är 
sådana byggnader massiva konstruktioner bestående av material med hög värmekapacitet och 
värmekonduktivitet, vilket medför möjligheter att lagra stora energimängder utan att väsentligt 
variera innetemperaturerna i tiden (Akander, 2000). Men lagringsförmågan är även beroende av 
byggnadens värmeförluster genom värmeledning och ventilation/luftinfiltration, vilka ofta antar höga 
belopp och kan uttryckas som en förlustkoefficient. Den termiska tidskonstanten för en byggnad 
uppskattas genom att dividera termiska massan med förlustkoefficienten. I regel har äldre byggnader 
stora tidskonstanter vilket påverkar deras respons på temperaturförändringar i uteklimatet. Det vill 
säga att bygganden blir som ett stort värmebatteri som kan lagra energi och frigöra den senare när det 
är kallare ute. Energilagringen beror på byggandens storlek och termiska massa samt 
förlustkoefficient, samt hur mycket innetemperaturerna tillåts fluktuera. Byggnadens tidskonstant, 
givet lämpligt styr- och reglersystem, ger enligt (Karlsson, 2012; Norén et al., 1999; Verbeke & 
Audenaert, 2018), stor potential till: 1) jämnare inomhustemperaturer i tiden, 2) minskning av 
värmeeffektbehovet, åtminstone kortvarigt och 3) energibesparing. 

Det blir allt vanligare att energiföretag erbjuder sina kunder så kallad effektberoende energiräkning, 
d.v.s. ju fler och högre effekttoppar man har vid t.ex. kallare väder, desto dyrare blir samma levererad 
mängd energi. När mycket uppvärmning behövs samtidigt från olika kunder, skapas effekttoppar i 
fjärrvärmenätet, vilket gör att tillfälliga och dyra resurser behövs för att täcka behovet. Olika lösningar 
såsom energilagringsmetoder kan bidra till laststyrning på nätet och därtill spara stora belopp både för 
fjärrvärmeleverantören och för fastighetsägare. Energi- och kostnadsbesparingspotentialen är ännu 
större hos äldre byggnader eftersom de ofta är dåligt isolerade och har stor termisk massa. 
Energilagringsmetoden kan leda till sparad primärenergi och effektivare resursanvändning, och 
samtidigt bidra till mindre växthusgasutsläpp och bättre miljö. 

Att lagra värme under perioder med lägre efterfrågan till kallare perioder fungerar som en strategi för 
värmeeffektshantering och hållbar energiförsörjningsplanering. Följaktligen kan värmeförsörjningen 
till byggnaden tillfälligt minskas under perioder med höga effektbehov, vilket möjliggör användning av 
lagrad termisk energi i byggnadsstommen. Hayati et al. undersökte temperaturminskningen inomhus 
och leveransen av värmeeffekt till en flerfamiljsbyggnad med fokus på att beräkna 
värmelagringskapacitet och termiska trögheten (Hayati et al., 2022). I det genomförda 
avklingningstestet, där energiförsörjningen ströps under 5 timmar genom att utegivaren ”lurades” till 
att känna 15 grader högre temperatur än vad som rådde vid tillfället, var den beräknade 
energiförsörjningsminskningen 61% under 5 timmar, vilket resulterade i en minimal 
temperatursänkning inomhus på endast 0,3 °C. 

Artificiell intelligens (AI) och maskininlärningsalgoritmer (ML) kan identifiera inflytelserika parametrar 
och variabler som påverkar energianvändningen och noggrant prediktera deras värden. Dessa 
modeller kan urskilja potentiella effekttoppar genom att lära sig från tidigare varierande 
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omständigheter. AI-lösningar använder byggnadens energi- och effektsignatur, inklusive faktorer som 
termisk massa, termisk komfort och väderprognoser för att förutse olika timvisa och dagliga energi- 
och effekttoppmönster (Calikus et al., 2019; Vandermeulen et al., 2018). Denna metod innebär att 
träningsmodeller för styr- och reglering används med uppmätta data, som omfattar energianvändning, 
temperaturer och implicit värme från internlaster samt solinstrålning. Modellerna förutspår 
värmeförsörjning och bibehåller "flytande" inomhustemperaturer inom ett angivet intervall genom att 
använda den termiska massan som finns inom byggnadsskalet. Utbytet av större energimängder sker 
när temperaturskillnaden mellan inomhus- och utomhusmiljön ökar. Det är viktigt att förhindra 
överdrivna temperaturfluktuationer som kan leda till ogynnsamma relativa fuktighetsnivåer eller höga 
fluktuationer, vilket negativt påverkar material, inredning, föremål eller dekorationer inom byggnaden. 

Att implementera intelligent drift och underhåll hos historiska byggnader innebär integrering av 
digitala teknologier och dataanalysmetoder. Detta tillvägagångssätt hjälper till att upprätthålla 
funktionerna hos dessa byggnader samtidigt som deras kulturvärden bevaras. Ni et al. utvecklade och 
testade en omfattande digitaliseringsplattform för intelligent underhåll av historiska byggnader (Ni, 
2023). DPlattformen sammanbinder Internet of Things (IoT), molnlagring och -beräkningar samt 
maskininlärning med syfte att samla in data från kulturhistoriska byggnader, avslöja innemiljöernas 
och energiprestandas status,  och via en offentlig molnplattform lagra data och distribuera 
information och beslutsunderlag (Ni et al., 2022a, 2022b). Dessutom används djupinlärningsmodeller 
för att fånga trender och osäkerheter i byggnaders energianvändning (Ni et al., 2023, 2024). 
Plattformen kan emellertid främst användas för att övervaka byggnaden men optimerar inte den 
levererade energin och byggnadens energianvändning. 

Att upprätthålla en delikat balans mellan att bevara autenticiteten hos kulturarvsbyggnader och att 
införliva energieffektivitetsåtgärder är viktigt. Genom att samordna modern teknik med engagemang 
för att bevara det förflutna kan vi garantera att kulturhistoriska byggnader och miljöer består som 
symboler för vårt kulturarv, samtidigt som de spelar en roll för att främja en mer hållbar framtid. Detta 
projekt syftar till att nyttja byggnadens stomme som ett värmelager för att bevara och spara energi 
utan fysiska ingrepp. Genom att använda AI och ML-modeller regleras värmeförsörjningen strategiskt 
baserat på väderprognoser och en binär kalender för personnärvaro. Denna metod möjliggör 
optimering av energianvändning och effektbehov samtidigt som inomhustemperaturer bibehålls inom 
lämpliga nivåer. Detta inkluderar tillfällig minskning av uppvärmningen utan att kompromissa med 
lokalernas termiska komfort. 

Projektet har som utgångspunkt den mätdata som tidigare uppmätts och sparats för den studerade 
byggnaden, vilken medger analys av den information som dataserierna implicit innehåller. Olika ML-
metoder kan användas för att prognosticera effekttoppar (med hjälp av övervakad (supervised) 
inlärning), identifiera mönster för prognostisering av effekttoppar, analysera optimalt energiutbyte och 
lagringsmetoder samt erbjuda schema för energidistributionen. Det finns också så kallade förstärkta 
inlärningsmodeller (Reinforcement learning) som kan lära sig av datahistorik (modell-baserad LR) och 
använda modellen för att träna den i beslutfattande riktlinjer/policyer som kan avgöra lämpliga 
åtgärder såsom schema och typ av värmetillförsel till byggnaden. Modellerna lär sig från offline eller 
urkopplat data (offline RL) och korrigerar sig själva via prövning med on-line data (trial & error) och 
förbättrar sin beslutsprocess genom en belöningsstruktur (till exempel, när den lyckats med minskning 
av toppeffekter med bebihållen termisk komfort hos brukarna), under handledning av energiexperter. 
På så sätt lär sig modellerna om systemets behov och variationer enligt byggnadens efterfrågan, 
upptäcker och prognostiserar effekttoppar och optimerar därmed energianvändning och sänker 
därmed uppvärmningskostnader och CO2-utsläpp. 
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1.2 SYFTE OCH MÅL 
Projektet bidrar till effektiv energianvändning, resursutnyttjande, flexibilitet, och robusthet och 
minskning av växthusgasutsläppen utan att påverka byggnaders kulturvärden, vilket är i linje med 
regeringens mål, bl.a. att ha 50 procent effektivare energianvändning t.o.m. år 2030 (jämfört med 
2005), och även globala klimatmål såsom Parisavtalet, att hålla den globala uppvärmningen under 1,5 
grader. Projektet bidrar också till Sveriges miljömål om God bebyggd miljö, Begränsad klimatpåverkan 
och Generationsmålet. 

Syftet är att med hjälp av de förslagna AI och ML-modellerna pröva strategier för inlärning av 
byggnadens behov (energi och effekt) som upptäcker mönster och predikterar effekttoppar och 
optimerar därmed energianvändningen i god tid utan att termiska komforten inomhus försämras.  

Dessa delar ingår som projektets resultat och uppfyllda mål:  

1) Utvecklade AI-modeller samt databaser för laststyrning på fjärrvärmenät efter finjustering 
(”fine-tuning”) och utvärdering.  

2) Lönsamhetsanalys och kostnadsbesparingar i anknytning till energibesparingar och 
toppeffektreduktioner samt analys av primärenergifaktorer och miljöpåverkan i anknytning till 
energibesparingar på basis av hur energiproduktionen är idag och hur den uppskattas se ut år 
2030. 

3) Målet är att sprida ut resultatet både nationellt via workshop med seminarier och 
internationellt. Målet är också att öka kunskapen om energilagring i byggnadsstommen hos 
energileverantörer, fastighetsägare och förvaltare samt antikvarieexperter genom 
helhetsperspektiv på byggnaden som ett system. 
 

1.3 OMFATTNING OCH AVGRÄNSNING 
Projektet utvärderar potentialen för att förbättra termisk komfort, energieffektivitet och topptrimning 
av levererad uppvärmningseffekt i historiska byggnader genom utveckling av en AI-modell. Den 
föreslagna AI-modellen kan förutsäga värmebehovet i fjärrvärmen (FV) i förväg baserat på 
väderprognoser, en binär kalender för brukandet av byggnaden och interna laster, samt lagra 
fjärrvärme i byggnadens stomme inför kallare perioder. Den utvecklade AI-modellen har tre 
huvudsakliga funktioner som kan viktas av användaren: 

- Optimal termisk komfort 
- Optimal energi (minimera fjärrvärmeleveransen) 
- Optimal effekt (kappa toppeffekter av fjärrvärmeleveransen) 

På längre sikt är det tänkt att systemet ska fortsätta användas efter projektets avslut och att 
metodiken kan implementeras i andra äldre och kulturhistoriska byggnader.  
Ett av syften med projektet har varit att kunna implementera och testa AI modellerna i styrsystemen 
hos fallstudiebygganden, Rådhuset i Gävle, men tyvärr lyckades det inte att praktiskt införa dessa, på 
grund av bristande villighet från fastighetsägaren och framförallt styrsystem-tillverkaren. 
Förhoppningsvis kan projektet kompletteras med implementering av AI modellen i byggnadens 
styrsystem i framtiden.   
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2. GENOMFÖRANDE 
Byggnadens som har använts som fallstudie är Rådhuset beläget i staden Gävle i mellersta Sverige. 
Rådhuset är en kulturmärkt byggnad från 1780-talet som nu används som kontorsbyggnad med en total 
användbar golvyta på 2100 m2. Uppvärmning av utrymmen och tappvarmvatten sker genom fjärrvärme. 
Rummen värms med radiatorer och det sker även en eftervärmning av tilluften från två FTX-system.  

För att kunna utveckla AI-modeller behövs en väl strukturerad (flerårig) datahistorik från 
energianvändning av byggnaden i fråga, med minimum timvis tidsupplösning. Energidata måste 
synkroniseras med väderdata. Data för inomhustemperatur, levererad fjärrvärme och värmevattnets 
framledningstemperatur samlas in från fastighetsautomations-systemet (BMS) Schneider-modell ZS101 
(Schneider Electric, n.d.). Profiler för inomhustemperatur beräknades med hjälp av registrerade 
lufttemperaturer från zoner i BMS och har viktats från genomsnittliga värden över golvytan under 
mätperioden. Väderdata inklusive utomhustemperatur hämtades från Sveriges Meteorologiska och 
Hydrologiska Institut (SMHI). För att kunna utveckla AI-modeller sammanställs en längre (nästan ett och 
ett halvt år) strukturerad dataserie från Rådhuset enligt nedan: 

1. Levererad timvis fjärrvärmeeffekt (kWh/h) för hela byggnaden – totala värmen inklusive 
uppvärmning av utrymmen och tappvarmvatten. 

2. Inomhustemperaturer (°C) (timvis genomsnittligt golvytaviktad för hela byggnaden). 

3. Framledningstemperatur, värmevattnets temperatur till radiatorer, (°C) (timvis genomsnittligt 
värde). 

4. Timvis utomhustemperatur (°C). 

Vi utvecklade olika maskininlärningsalgoritmer inklusive moderna djupinlärningsmetoder för att träna 
modeller baserade på insamlad data. I denna studie låg fokus på att optimera värdena för 
fjärrvärmeleverans för att upprätthålla en bekväm inomhustemperatur för en specifik byggnad. Målet 
var att identifiera en sekvens av framledningstemperaturer som minimerar levererad värme och/eller 
toppeffekter samtidigt som inomhustemperaturen hålls inom börvärdesinställningar. 

Tillvägagångssättet omfattar tre nyckelkomponenter: en generativ modell, en dynamisk modell 
(prediktionsmodellen) och en optimerare. Den generativa modellen genererar olika sekvenser av 
framledningstemperaturer med hänsyn taget till föregående dagars data. Prediktionsmodellen 
förutsäger inomhustemperaturer baserat på olika indata, inklusive framledningstemperatur och 
prognostiserad utomhustemperatur. Slutligen utnyttjar optimeraren den genererade sekvensen för att 
hitta optimala framledningstemperaturer, vilket säkerställer effektiv styrning av fjärrvärme för 
förbättrad komfort och energioptimering. Dessutom utvecklade vi en grundläggande linjär modell (en 
linjär värmekurva som efterliknar den verkliga i byggnaden) för jämförelseändamål. En detaljerad 
beskrivning av AI-modellen ges i bilaga A.  
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3. RESULTAT 
Tabell 1 presenterar uppmätta och AI-modellgenererade data för årlig uppvärmning av 
fallstudiebyggnaden (Rådhuset).  

Tabell 1: Årligt uppmätt och beräknad fjärrvärme, FV, (kWh) 

  
Fjärrvärmeanvändning 
(kWh)  

Skillnad mot uppmätt 
fjärrvärmeanvändning (%) 

Årlig uppmätt FV, år 2021 233 238 100,0 

Årlig FV - beräknad av linjär modell 238 624 102,3 

Årlig FV - beräknad av AI-optimal modell för 
termisk komfort 222 691 95,5 

Årlig FV - beräknad av AI-optimal modell för 
energi 

145 364 62,3 

Årlig FV - beräknad av AI-optimal modell för 
effekt 166 517 71,4 

Årlig sparad energi - beräknad av linjär modell -5 386 -2,3 

Årlig sparad energi - beräknad av AI-optimal 
modell för termisk komfort 10 547 4,5 

Årlig sparad energi - beräknad av AI-optimal 
modell för energi 

87 874 37,7 

Årlig sparad energi - beräknad av AI-optimal 
modell för effekt 66 721 28,6 

Fjärrvärmen (FV) i Gävle, tillhandahållen av det lokala energiföretaget Gävle Energi, genereras helt 
från förnybara källor. Produktionsblandningen är 100% förnybar, främst bestående av spillvärme från 
industrier samt kondensationsvärme från rökgaser och värme från kraftvärmeverk (CHP) som drivs 
med biobränslen som bark, returträ och en liten mängd flis, samt små mängder bioolja. Denna 
produktionsmetod resulterar i en låg miljöpåverkan, motsvarande 7g CO2-ekvivalenter per 
kilowattimme (kWh) år 2023; år 2021 var det 6g CO2-ekvivalenter per kilowattimme (kWh) (Gävle 
Energi, n.d.-a). Som ett resultat motsvarar den totala mängden FV som levereras till Rådhuset cirka 1,4 
ton CO2-ekvivalenter årligen. 

Dessutom är prisbilden för detta miljömedvetna fjärrvärmesystem satt till 0,526 svenska kronor per 
kWh, tillsammans med vissa fasta avgifter för år 2024 (Gävle Energi, n.d.-b). Följaktligen, enligt den 
årliga sparade fjärrvärmenergi (kWh) och -toppar (kWh/h) som presenteras i Tabell 1 ovan resp. Tabell 
2 i Bilaga B, kan optimering av energi- och effektmodeller generera ungefär 38 respektive 29% 
energibesparing, motsvarande en minskning av värmekostnaderna med cirka 46 000 respektive 35 
000 svenska kronor (motsvarande 22 resp. 17 kr/m²) baserat på det allmänna FV priset hos 
energileverantören.  

Men för företagskunder finns det även andra delar i pristariffen såsom kapacitetsavgift, 
säsongsuppdelat energipris samt ett volymavdrag. Kapacitetsbehov är beräknat enligt en linjär 
prognos av byggandens energibehov per dygn när det är minus 10 grader °C i utetemperatur. 
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Beräkningen baseras på dygnsförbrukningar för byggnaden som uppmätts (måndag – fredag) under 
närmast föregående period, november – mars. För 2024 är Kapacitetspris = 37,12 kr/kWh. 
Volymavdraget baseras på fjärrvärmeleveransens omfattning per ackumulerat kalenderår och 
anläggning. Om fjärrvärmeanvändningen är större än 100 MWh görs ett avdrag på priset varje månad. 
En mer detaljerad kostnadsanalys med hänsyn till 2024 tariff av energibolaget presenteras i Bilaga C. 

I Figur 1 sammanställs ett varaktighetsdiagram för tillförd FV. Notera att den linjära 
predikteringsmodellen kan öka FV-behovet något, vilket leder till en efterföljande ökning av 
värmekostnaderna. Tabell 2 i Bilaga B visar att de 10 högsta effekttimmarna blir något högre med den 
linjära modellen, medan AI-modellerna kan minska dessa med cirka 6%. AI-modellen med 
värmeeffektoptimering har en något högre potential för att kapa de 10 högsta FV-effekttopparna och 
resulterade i ca 7% minskning. För mer detaljerade resultat se Bilaga B. 

Som komplement till energisignaturdiagrammen i Bilaga B illustrerar Figur 1 varaktighetsdiagram för 
de studerade fallen. Figuren visar även energibesparingspotentialen som AI-modellens prediktioner 
medför, eftersom arean under respektive kurva representerar årlig total energianvändning. Figuren 
indikerar det som nämnts ovan om att den linjära modellen ibland till och med förstärker topparna i 
leverans av fjärrvärme, eftersom den saknar förmåga att leverera FV i förhållande till byggnadens och 
uteklimatets varierande dynamik. 

 

Figur 1: Varaktighetsdiagram för den tillförda fjärrvärmen (District Heating, DH) för uppvärmning och 
varmvatten för fallstudiebyggnaden, Rådhuset i Gävle, inklusive uppmätta samt modellberäkningar.  
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4. HUR SKA RESULTATEN KOMMA TILL ANVÄNDNING 
Vår idé är att presentera denna fallstudie som ett praktiskt görbart exempel på energilagring i 
kulturhistorisk byggnadsstomme som en resurseffektiv innovativ metod för energi- och 
effekttoppbesparingar med bibehållen termisk komfort, och inte minst sprida resultatet bl. a. genom 
deltagande i internationella och nationella konferenser/seminarier.  

Målsättningen är att projektets resultat skall få stor inverkan på effektivare energianvändning i 
kulturhistoriska byggnader via lagring av energi i byggnadsstommen, samt höja kunskapen om 
metodens potential och miljöpåverkan. Metoden kan utvecklas och automatiseras till att bli en 
beprövad metod för äldre kulturhistoriska byggnader, särskilt ”tunga” sådana, med stor termisk massa. 
Resultaten ska även kunna användas av fastighetsägare som tredjepartsinformation samt bidra till att 
vara en form av kompletterande beslutsunderlag för byggnadsförvaltare och antikvariska experter. 
Eventuella befintliga styr- och regleringsutrustningens kan uppdateras via automatiska anpassning av 
reglerstrategin, även för förbättrad termisk komfort inne. 

Den utvecklade AI-modellen med Graphic User Interface (GUI) i den här studie kan vara vägledande för 
att utveckla energioptimeringstjänster och produkter samt vid beslut om vilka lösningar som är 
långsiktigt lämpligast ur energi- och miljöperspektiv. Projektet bidrar till en mer flexibel och robust 
energitillförsel med ett jämnare effektbehov, vilket gagnar både energibolag, fastighetsägare samt 
miljö, då dyrare och eventuella tillfälliga fossilberoende energiresurser kan undvikas, vilket leder till 
lägre växthusgasutsläpp.  

Som en liten AI modelleringsguide behövs följande etapper för att kunna skapa och träna en AI modell: 

För att kunna utveckla AI-modeller behövs en väl strukturerad (flerårig) datahistorik för 
energianvändning och temperaturer från innemiljön, utemiljön och framledningstemperaturer för den 
aktuella byggnaden, med minimum timvis tidsupplösning. Energi- och temperaturdata måste 
synkroniseras med väderdata. Datainsamling ska ske i samråd med fastighetsägare och energibolaget 
och det är utmanande för att det kan saknas data för vissa perioder och ibland måste data tolkas och 
omsorteras för att kunna användas för träning av AI modeller. När det gäller fjärrvärme, som är i fokus 
i denna studie, kan via så kallade DUC (DataUnderCentraler) hela värmetillförseln i varje 
fjärrvärmecentral styras på ett mer smidigt och centralt sätt, dvs. energi och effekttillförsel samt 
framlednings- och innetemperatur kan avläsas och valideras i realtid centralt från energibolaget. 

Efter datainsamlingen kan olika maskininlärning (ML)-algoritmer inklusive djupinlärningsmetoder 
utvecklas och prövas på uppmätta energi- och effektdata hos byggnaden, för att få modeller som med 
hög precision kan förutsäga effekttoppar. För att avgöra vilken typ av ML modeller som är lämpligast 
bör dataserien inklusive effekttoppar undersökas samt eventuella avvikelser mellan modeller och 
mätdata tolkas och kategoriseras.  

Laststyrningsmodellernas potential för att minska toppeffekter bör prövas och valideras mot mätdata 
(avvikelsedetektering). För detta kommer de utvecklade ML-modellerna att användas, för att korrigera 
eventuella avvikelser i en iterativ process. För att förbättra robustheten, utvecklas 
osäkerhetsmedvetna ML-modeller med hjälp av vilka AI-systemet kan växlas till att kontrollera i säkert 
läge när osäkerheten för ML-modellen är hög. Probabilistiska modeller byggs för att hantera 
osäkerheter som härrör från brist på data, till exempel för låga inomhustemperaturer (utanför 
komfortintervallet) såväl som extremfall av kallt väder utöver vad som redan finns i den uppmätta 
dataserien. AI modellen”utbildas/tränas” för att tillåta algoritmen att upptäcka toppeffekter i god tid 
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och implementera en lämplig åtgärd eller beslutssekvens för att styra värmetillförsel och minska 
toppeffekten med bibehållen termisk komfort. Algoritmen erhåller optimal hantering av osäkerheter 
baserade på algoritmer för förstärkningsinlärning (RL) och mer specifikt modellprediktiv kontroll 
(MPC). Denna lösning bygger på att uppnå maximerad total belöning genom att använda offline data 
som samlades in i föregående steg. Sådana RL-algoritmer som lär sig av offline-data istället för online 
trial-and-error är särskilt lämpliga för vår problemformulering eftersom en behaglig rumstemperatur 
måste uppnås hela tiden, även under RL-träning. 

Ett detaljerat uppgifts- och arbetspaket behövs för att utveckla AI-modellen, där all tillgänglig indata 
framgår samt förväntade utdata inom respektive tidsram. En plan bör tas fram för eventuell 
modellverifiering, finjustering och validering av modeller.  
Tidsatta arbetspaket förslås enligt följande:   

1) Design av ML lösningar samt Datainsamling 

Utvalda byggnader uppvärmda med fjärrvärme. Energibolaget som levererar värmen till 
byggnaderna har möjligheter att styra värmemängden och temperaturen på värmevatten via DUC 
(dataundercentralen) och styrning (som finns i varje fjärrvärmecentral) med möjlighet att tillfälligt 
höja eller sänka temperaturen. Data inkluderar levererad energi och effekt, systemtemperaturer, 
flöden samt inne- och utetemperatur och eventuellt kompletterande mätdata t ex verksamhets- 
och fastighetsel. Tillräcklig samlade data (kanske med två år datahistorik för samma byggnad) ska 
struktureras i en databas med olika kategorier som ska användas för att utveckla och träna 
maskininlärningsmodeller. Förutom indata görs en skiss av förväntade resultat, prestanda, 
noggrannhet, modellverifiering, möjlighet för finjustering och modellvalidering.  

 Förväntat resultat: En databas av strukturerat samlat indata inklusive levererad energi och effekt, 
temperaturer, flöden samt inne- och utetemperaturen. Information om hur energilagringen kan 
påverka operativa temperaturen hos lokaler och uppvärmning. I denna etapp framgår även hur 
byggnadens tidskonstant påverkar värmedistribution i byggnaden samt uppskattningar av 
byggnadens lagringskapacitet.  

2) Modellträning och utforskning/utvärdering av ML modeller  

Med hjälp av Framåt Dynamisk Modell Träning (inlärning) använder vi samlade indata (offline data) 
för att träna olika djupinlärningsmodeller såsom multilayer perceptron (MLP), Convolutional Neural 
Networks (CNN) och transformatorer. Modellerna utforskas och prövas för att koppla byggnaden 
energilagring till innetemperatur, termisk komfort och energianvändning i olika väderförhållanden.  

Syftet med framåtriktad modellinlärning är att få en modell med följande input- och outputdata:  
• Aktuella/tillgängliga mätdata: aktuella temperaturer inomhus och utomhus, nuvarande 

väderförhållanden, värmeflöde/effekt (både framledningstemperatur, returtemperatur och 
vattenflöde) samt en binär kalender för uppskattad personnärvaro. 

• Sekvens av framtida indata (prognos): timvis väderprognos för en given tidshorisont (t.ex. 
under det närmaste dygnet eller veckan) samt en binär kalender för uppskattad 
personnärvaro. 

• Konstanta parametrar: byggnadens termiska parametrar samt möjligtvis 
fönsterparametrar, apparater och belysning. 

• Styrsignaler: levererad fjärrvärme per timme till byggnaden för samma tidshorisont. 

Modelloutput: 
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• Beräknad (prognoserat) timvis inomhustemperatur för samma tidshorisont (t.ex. under det 
närmaste dygnet eller veckan). 

Efter utforskning av olika modeller väljs lämpligaste algoritm och en första version av modellen kan 
utvecklas.  

Modellen analyseras avseende avgörande parametrar och deras intervall och 
besparingsmöjligheter.  

3) Model predictive control – kontrollstrategi 

Utvecklad maskininlärningsmodell kommer också utvärderas för automatiserad metod så att den 
självanpassas till olika scenarier för att studera energibesparingar och minskning av effektbehov. 
Indata avser även att möjlighet till ändring i byggnadernas systeminställningar genom styr- och 
reglerteknik för att fastställa byggnadens dynamik baserad på olika scenarier och olika 
väderförhållanden för uppvärmning.  

Med den utvecklade modellen kan vi nu hitta en sekvens av levererad fjärrvärme (t.ex. var 30:e 
minut under det närmaste dygnet) som gör att den aktuella rumstemperaturen ligger så nära 
börvärdet som möjligt. Kontrollen kan utföras av Modell Prediktiv Kontroll (MPC) som är en 
avancerade kontrollstrategi baserad på användningen av den utbildade/tränade framåt-dynamiska 
modellen för att direkt hitta sekvensen för levererad fjärrvärme. Här tränar vi inte någon ny modell 
utan använder den redan utbildade framåtmodellen för att hitta optimala åtgärder (optimal 
fjärrvärmeleverans).  

De initiala data som vi använder för att träna den dynamiska modellen (offline-data) kan 
vara annorlunda än de data som kontrollanten använder. Därför är det alltid en bra idé 
att finjustera framåtmodellen ytterligare med de senaste samlade indata (med MPC 
kontrollstrategi som är i fokus i den här etappen).  
Förväntat resultat: Optimering av styrsignaler via MPC.  

4) Modelloptimering via hyperparameter-inställning och redovisning av API (Application Program 
Interface).  

För att optimera modellen kan hyperparametrar väljas för att felsöka modellen och utföra 
felanalyser exempelvis med överanpassning av data till en felsökningsmodell. Olika 
modellkomponenter ska utvärderas med respektive inputdata för att testa förstärktalgoritmen. 
Eventuella problem med datakvalité samt överanpassning med indata ska lösas. Dessutom behövs 
en API (Application Program Interface) eller en applikation för att övervaka styrmodeller i realtid 
baserad på nya indata (inklusive både träning och testdata).  

Kostnadsanalys/lönsamhetsanalys av olika lagringspotential med hjälp av utvecklade modeller 
utvärderas för att hitta vilka lösningsalternativ för energilagring i byggnaden som ger: 

• Lägst resursanvändning – primärenergi 
• Lägst miljöpåverkan – växthusgasutsläpp 
• Högst termisk komfort  
• Högsta lönsamhet och besparingspotential  
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Förväntat resultat: De styrmodeller som medför lägst resursanvändning och miljöeffekt genom 
effektiv energianvändning i byggnader kommer att presenteras utifrån primärenergianvändning 
och växthusgasutsläpp.  

En mer detaljerad beskrivning av modellen är presenterad i Bilaga A:  Beräkningsproceduren och 
utvecklingen av AI-modellen.  

Därutöver presenteras det grafiska användargränssnittet (GUI) som utvecklats för modellen i Bilaga D: 
Graphic User Interface (GUI) till den presenterade AI modellen. 
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5. DISKUSSION  
Predikteringar för fjärrvärme (FV) från den linjära modellen överensstämmer nära med de uppmätta 
fjärrvärme, till skillnad från prognosberäkningar av AI-modellen. Prognosberäkningar från de optimala 
energi- och effekt AI modellerna indikerar lägre nivåer av FV jämfört med den linjära modellen, särskilt 
märkbart under sen vår och tidig höst. Denna diskrepans kan orsakas av de linjära 
börvärdeinställningar, känt som värmekurvan, som är inbäddat i installerade värmesystem. 
Värmekurvan etablerar en direkt korrelation mellan framledningstemperaturen i värmesystemet och 
utomhustemperaturen. Å andra sidan har AI-modellen förmågan att optimera levererad FV genom att 
ta hänsyn till historiska data av levererad FV, samt inomhus- och utomhustemperaturer. 

Som presenterats i Tabell 1 samt Tabell 2 (i Bilaga B), ledde optimeringen av energi och värmeeffekt 
med AI-modellen till olika besparingar. Detta kan till en början verka motstridigt, med tanke på att 
båda modellerna syftar till att optimera levererad FV och minska effekttoppar. Orsaken bakom denna 
diskrepans ligger i metoderna för dalfyllnings- och topplastminimeringstekniker (valley filling and peak 
shaving) som används av energi- och effektmodellen. Även om dessa tekniker effektivt minskar 
topparna i levererad värme kan de samtidigt leda till en ökning av energianvändningen under några 
timmar, eftersom modellen försöker minska topparna och leverera en jämnare FV under kommande 
timmar utan att sänka eller höja innetemperaturen för mycket. Detta inträffar eftersom 
värmeförluster också eskalerar under lagringsprocessen, vilket resulterar i en tillfällig höjning av 
inomhustemperaturen på grund av högre levererad uppvärmning av utrymmen. Figur 1 illustrerar inte 
denna fenomen eftersom den föreslagna AI-modellen även sänker inomhustemperaturen, i linje med 
de angivna inställda börvärden för innetemperaturen, för att spara uppvärmningsresurser. Följaktligen 
minskar AI-modellen både uppvärmningseffekttoppar och minimerar, det vill säga optimerar, den 
totala FV-leveransen genom att upprätthålla inomhustemperaturen nära de inställda börvärdena och 
därmed bibehålla termisk komfort. 

Även om det finns en potentiell ökning av total energilagring kan de ekonomiska besparingarna i 
samband med topptrimning fortfarande vara betydande, särskilt när andra energisparåtgärder inte 
genomförs. Kostnadsminskningarna kommer från besparingar i användningen av reservanläggningar 
och antagandet av mindre anläggningar för att möta toppbelastningar (Vandermeulen et al., 2018).   

Den förväntade minskningen av totala utsläpp som resultat av optimering av FV-försörjning genom 
AI-modellen förväntas vara betydande. Dessa påverkningar skulle kunna förstärkas ytterligare om 
liknande optimeringar av AI-modeller tillämpas på alla sammanlänkade byggnader inom ett 
FV-nätverk, vilket undviker behovet av mindre miljövänliga energikällor (för att uppfylla extra behov 
vid topplasttimmarna). 

Generellt sett är inomhustemperaturen högre under arbetstid jämfört med icke-arbetstid, en åtgärd 
som vidtas för att säkerställa personalens termiska komfort. Denna temperaturreglering styrs av 
specifika inställda värden som tilldelats AI-modellen för underhåll av inomhustemperaturen: 21℃ 
under arbetstid (06:00-18:00) och 18℃ under icke-arbetstid (18:00-06:00 på vardagar samt under 
helger och helgdagar). Den studerade byggnaden används som kontorsbyggnad och därför är dessa 
inställda värden utformade för att överensstämma med de boendes komfortpreferenser under olika 
tidsintervall. 
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Det är tydligt att den uppmätta inomhustemperaturen når sina lägsta punkter under de kallare 
vinterdagarna, medan de inomhustemperaturer som förutsägs av AI-modellen konsekvent är cirka 1 
grad högre än de uppmätta värdena. De uppmätta inomhustemperaturerna kan sjunka under 21 
grader och påverka personalens termiska komfort under vinterdagarna, medan AI-modellens 
förutsägelser särskilt ligger runt inställda börvärden under arbetstid och icke-arbetstid även under de 
kallaste dagarna i januari och februari. Till exempel kan den förutsedda inomhustemperaturen sjunka 
under 21 grader under några timmar under arbetstid, men de är fortfarande över 20 grader enligt 
inställda börvärden. Dessutom visar den optimala energi- och effektmodellen under hela året jämnare 
inomhustemperaturer jämfört med de uppmätta temperaturerna, dvs. AI-modellens förutsägelser är 
högre under de kallaste dagarna på vintern, medan de uppmätta värdena ibland är under de inställda 
värdena, och AI-modellens förutsägelser är lägre under våren och hösten, jämfört med de uppmätta 
temperaturerna. På så sätt försöker AI-modellen att sätta inomhustemperaturen så mycket som 
möjligt över de inställda värdena och samtidigt optimera leveransen av FV. Dock är förutsägelserna 
från den optimala termiska komfort AI-modellen närmare de uppmätta FV-förutom under de kallaste 
dagarna i januari och februari, eftersom modellen prioriterar den termiska komforten och har striktare 
inställningar för att hålla inomhustemperaturen över de inställda börvärdena. 

I den här studien används inomhustemperaturer som viktas efter golvyta, och i framtiden kan vi 
särskilja data per områden som är i direkt kontakt med utomhusmiljön. En betydande begränsning av 
AI-modellen uppstår på grund av bristen på mångfald i träningsdata. Med tanke på att data 
härstammar från en kompetent regulator, hamnar inomhustemperaturen främst inom ett snävt 
intervall, särskilt under den kalla delen av året. Dessutom blir data knapphändig för mycket kalla 
utomhusförhållanden, eftersom dessa inträffar en eller ett par dagar per år, om alls. Följaktligen står 
modellen inför betydande utmaningar när det gäller att göra precisa förutsägelser när 
inomhustemperaturen förväntas avvika utanför detta etablerade intervall, såsom förutsägelse av 
extremt låga temperaturer. 
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6. SLUTSATSER  
Denna fallstudie utforskar det innovativa användandet av en historisk stenbyggnads stomme som ett 
värmebatteri, med användning av artificiell intelligens (AI) och maskininlärningsmodeller. 
Tillvägagångssättet innebär kontroll av värmetillförsel baserad på väderprognoser och predicerad 
personnärvaro (arbets- resp. icke-arbetstimmar) för optimering av energianvändning och effektbehov 
samtidigt som termisk komfort bibehålls. Studien visar på betydande besparingar både vad gäller total 
och toppenergianvändning, och tyder på tillämplighet för liknande fall. Prediktionsmodellen använder 
en uppsättning konvolutiva neurala nätverk (Convolutional neural networks) som tränas genom 
övervakad inlärning. Simuleringsresultaten visar potential för besparingar på 38% och 29% i årlig 
fjärrvärme, beräknat av de optimala energi- och effekt-AI-modellerna, vilket visar på 
kostnadsbesparingar på cirka 46 000 respektive 35 000 SEK (22 och 17 SEK/m2) för den studerade 
byggnaden. Samma optimerande energi- och värmeeffekt-AI-modeller kan generera ungefär 23% 
minskning av toppvärmeeffekt i medeltal över året, beräknat per 24 timmar. Vidare utvecklades en linjär 
modell (likt den verkliga) för jämförelseändamål och denna bidrog till ökade uppvärmningskostnader 
genom att något öka behovet av fjärrvärme (FV). Dessutom visades det att AI-modellerna kan minska 
de 10 högsta effekttopparna per timme med cirka 6% för byggnaden. 

I termer av miljöpåverkan kan de potentiella besparingarna i årlig sparad fjärrvärmeenergi och 
effekttoppar leda till minst lika stora besparingar i de totala utsläppen som orsakas av produktion och 
leverans av FV, även om fjärrvärmeproduktion i detta fall är från hållbara och förnybara källor. Den 
förväntade minskningen av utsläpp genom att optimera FV-leveransen genom AI-modellen skulle vara 
ännu större om den tillämpades på alla sammanlänkade byggnader i ett FV-nätverk, vilket skulle minska 
behovet av mindre miljövänliga energiproduktionskällor. 

I framtiden kan den föreslagna AI-modellen genomgå testning och verifiering genom implementering i 
en verklig byggnad, specifikt Rådhuset i Gävle, i samarbete med fastighetsägaren. Vidare skulle 
integration i det befintliga fastighetsautomationssystemet möjliggöra datainsamling och 
modellprediktioner i realtid. Systemet skulle kunna generera signaler och meddelanden till 
fastighetsskötare och användare, för att uppmana till justeringar av värmesystemen vid 
oväntade/oönskade avvikelser i värmestyrningen. Ytterligare parametrar, såsom solstrålning, skulle 
kunna förbättra modellen om tillförlitliga data fanns tillgängligt. Känslighetsanalys skulle kunna bedöma 
modellens prestanda med och utan dessa extra parametrar. För närvarande använder modellen 
areaviktad inomhustemperatur för att utveckla förutsägelser, med resultat som representerar 
fjärrvärme för hela byggnaden, centralt styrd av fjärrvärmeväxlaren. Framtida utveckling av modellen 
skulle kunna utvidga dess prestanda till att styra inomhustemperaturer i enskilda rum, förutsatt att varje 
rums radiator är utrustad med fjärrstyrd termostat för separat temperaturreglering. I framtiden kan 
presenterad AI-modell ha tillämpningspotential att utvecklas för att ansluta flera byggnader inom ett 
distrikt och även över hela fjärrvärmenätet för att optimera FV-leveransen. Vidare erbjuder integration 
av FV-nätverket med elnätet möjligheten att synkronisera och optimera hela energisystemet, inklusive 
olika lagringssystem, både termiska och elektriska. 
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Bilaga A:  Beräkningsproceduren och utvecklingen av AI-modellen 
Inom projektet utvecklades olika maskininlärningsalgoritmer inklusive avancerade 
djupinlärningsmetoder för att träna modellerna med insamlade data.  Målet var att optimera 
fjärrvärmeleverans (minskad energianvändning och toppeffekter) och samtidigt upprätthålla en 
bekväm inomhustemperatur (termisk komfort) hos en kulturhistorisk värdefull byggnad. Genom att 
identifiera sekvenser av framledningstemperaturer, vilka   minimerar levererad värme med låga 
toppeffekter samtidigt som inomhustemperaturen hålls över börvärden under de kommande 48 
timmarna med prognostiserat väder (utetemperaturer). Tillvägagångssättet illustreras i figur 2 och 
omfattar tre nyckelkomponenter: en generativ modell (conditional Variations Auto-Encoder, cVAE), en 
prediktionsmodell (Dynamic model) och en optimerare (Optimizer). Den generativa modellen 
genererar olika sekvenser av framledningstemperaturer hos värmevattnet, som distribueras till 
radiatorsystemet och eftervärmning av tilluft, med hänsyn till historiska data. Prediktionsmodellen 
förutsäger inomhustemperaturer baserat på olika laster (kalender, dygnsscheman och 
börtemperaturer), inklusive framledningstemperaturer och prognostiserade utomhustemperaturer. 
Slutligen utnyttjar optimeraren den genererade sekvensen för att hitta optimala 
framledningstemperaturer, vilket medför effektiv styrning av fjärrvärmetillförseln för förbättrad 
termisk komfort och energioptimering. Därutöver utvecklades en grundläggande linjär modell för 
jämförelseändamål; denna modell avspeglar hur värmetillförseln i den studerade byggnaden styrs i 
dagens läge.  

 

Figur 2: Schematisk illustration av AI-modelleringsmetoden som används för predikterad 
fjärrvärmetillförsel och innetemperaturer. 

Nertill framgår detaljerade beskrivningar av de ingående komponenterna. 

 

Dynamic model (Prediktionsmodell) 
Prediktionsmodellen tar in byggnadens inomhus- och utomhustemperaturer samt levererad FV och 
framledningstemperaturer under de senaste timmarna (i simuleringarna satt till 7 dygn men kan anta 
andra värden), tillsammans med prognostiserade utomhustemperaturer och predikterade 
framledningstemperaturer hos värmevatten för de kommande 48 timmarna. Utdata från 
prediktionsmodellen är den predikterade inomhustemperaturen och fjärrvärmen för nästa timme. 
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Modellen beaktar även eventuella begränsningar och börvärden som tilldelats 
inomhustemperaturinställningar, 21°C under arbetstid (kl 06:00-18:00) och 18°C under icke-arbetstid 
(kl 18:00-06:00 under vardagar och alla timmar under helger och helgdagar). I båda fallen tillåts 
temperaturen understiga börvärdena med maximalt 1 grad några timmar under de kallaste 
vinterdagarna. Vidare bör den förutsagda FV aldrig bli negativ, och den lägsta 
framledningstemperaturen är satt till 18°C enligt den egentliga värmekurvan. Maximala 
framledningstemperaturen är inställd på 93°C enligt uppmätt data.  

Prediktionsmodellen består av en ensemble av konvolutionella neurala nätverk (Convolutional Neural 
Networks, CNN), vardera bestående av totalt 5 lager; tre 1D-convolutional-lager följt av två fullständigt 
anslutna lager. Den tränas genom övervakad inlärning och använder medelkvadratfelet (MSE) som 
förlustfunktion. Att använda en ensemble av modeller är vanligt inom maskininlärning, där flera 
individuella modeller, oftast av samma typ (i det här fallet flera CNN-modeller), kombineras för att 
bilda en enhetlig och mer robust prediktionsmodell. Denna kombination ger en spännvidd av resultat 
som kan sammanfattas genom tekniker såsom genomsnittbildning, omröstning eller viktad 
genomsnittsbildning (Sollich & Krogh, 1995). 

Ensemblens utdata ger en föreställning om sannolikheten eller tillförlitligheten hos 
förutsägelsen/predikteringen. Detta beror på att ensemblen kombinerar predikteringar från olika 
individuella CCN modeller, där var och en har sina egna styrkor och svagheter, och denna mångfald 
gör att ensemblen kan fånga upp olika aspekter från indatadistributionen/-fördelningen. Därmed ger 
ensemblen en bred utdata för bedömning av osäkerheter och ge probabilistiska uppskattningar hos 
varje prediktion. Detta är särskilt värdefullt i beslutsprocesser där att ha en tillförlitlig mätning tillåter 
oss att fatta beslut med ett mer informativt underlag, vilket beaktar potentiella osäkerheter och 
tillförlitligheter hos modellens prediktioner i olika scenarier. 

Varje CNN i ensemblen tränas separat genom att sampla datapartier (batches) ur träningsdatasetet. 
Modellens parametrar optimeras sedan med stokastisk gradientnedstigning (SGD) över de samlade 
datapartierna (batches). SGD optimerar globala förlustfunktionen hos CCN, dvs hur mycket modellens 
prediktion avviker från motsvarande mätvärden, i form av MSE, för att fastställa modellparametrarna.  

Generative model (Generativ modell) 
Användningen av data från den generativa modellen gör det möjligt för optimeraren att få indata från 
prediktionsmodellerna som är tillförlitlig och undviker data som ligger utanför en fördelning som kan 
förhindra korrekta predikteringar. Dessutom säkerställer optimeraren en tillförlitligare leverans av 
temperaturutdata till byggnaden genom att nära anpassa dem med tidigare levererade värden. Den 
generativa modellen är en villkorlig variationsautokodare (conditional Variational Autoencoder, cVAE) 
som genererar en sekvens av framledningstemperaturer, beroende av en given variabel (i det här 
fallet temperaturvärden för framledningen och en slumpmässigt utvald latent vektor från en 
normalfördelning). Villkorliga indata inkluderas för att bibehålla kontinuiteten mellan 
temperaturvärdena vid olika tidpunkter. Det är viktigt att notera att de latenta variablerna inte har 
någon fysisk betydelse; de fungerar helt enkelt som indata till den generativa modellen för att 
generera olika sekvenser. 
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Optimizer (Optimerare) 
Optimeraren syftar till att hitta en optimal sekvens av framledningstemperaturer för att bibehålla 
inomhustemperaturen inom ett angivet intervall, främst genom börvärden som inte eller endast 
tillfälligt kan underskridas. Dessutom minimeras medel- och maximala FV-värden som sekundära mål 
för att spara energi, effekttoppar och därmed minska kostnader. Höga FV-värden, även under korta 
perioder, kan vara kostsamma, så det är viktigt att i möjligaste mån minska både medelvärden och 
toppvärden (effekt). Slutligen läggs en straffterm till som ett mått på oenighet i utdata från de 
dynamiska modellerna i ensemblen. Sammanfattningsvis har optimeraren tre mål, dvs. att minimera: 
(1) medelvärdet för den levererade fjärrvärmen, (2) det högsta värdet (topplasteffekt) för fjärrvärmen, 
och (3) osäkerheten hos prediktionen från den dynamiska modellen. 

Optimeringen utförs med hjälp av ”random shooting” genom den generativa modellen. Ett stort antal 
latenta värden (t.ex. 1000) väljs slumpmässigt från standardnormalfördelningen. Dessa prover skickas 
sedan till den generativa modellen, som genererar sekvenser av framledningstemperaturer. 
Sekvenserna utvärderas sedan med hjälp av prediktionsmodellen för att beräkna kostnaden 
(”straffet”) för varje sekvens baserat på en målfunktion. Sekvensen med lägst kostnad betraktas som 
de optimala FV-värdena för de kommande timmarna. Optimeringsprocessen kan utföras på en timme 
eller gradtimme basis, beroende på frekvensen för justeringar av 
framledningstemperatursekvenserna. 

Piece-wise linear model (Styckvis linjär modell) 
För att utvärdera effektiviteten hos det föreslagna neurala nätverksansatsen implementerades en 
styckvis linjär modell som kartlägger utomhustemperaturen gentemot den levererade fjärrvärmen, 
optimerad genom stokastisk gradientnedstigning (SGD). Optimeringen utförs genom att köra SGD på 
alla datapartier (batches) som samplats ur hela träningsdatasetet. 
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Bilaga B:  Fortsättning av resultat  
Tabell 2 presenterar data för uppmätta, linjära modellens och AI-modellernas predikteringar för årlig 
uppvärmning av utrymmen (inklusive tappvarmvatten) och sparade (kapade) effekttoppar. 
Fjärrvärmedata har mätts och simulerats per timme, vilket innebär att enheten är kWh för 
uppvärmning och kWh/h för effekttopparna. Den årliga fjärrvärmeenergitillförseln har beräknats per 
timbasis. För att uppskatta sänkningen av värmeeffekt har denna beräknats utifrån de maximala 
dagliga topparna hos fjärrvärmen (kWh/h) per dygn (24 timmar), och besparingen är skillnaden mellan 
AI-modellens prediktering och den levererade (uppmätta) fjärrvärmen. För att ytterligare analysera 
minskning av effekttoppar har 2021 års tio-i-topp toppeffektbehov per timme (kWh/h) sammanställts 
för de olika fallen.  

Priset för Gävle Energi’s fjärrvärmesystem är satt till 0,526 svenska kronor per kWh tillsammans med 
vissa fasta avgifter för år 2024 (Gävle Energi, n.d.-b). Följaktligen, enligt minskningen av årlig 
energianvändning (kWh) och effekttoppar (kWh/h) som presenteras i Tabell 2, kan AI 
optimeringsmodellerna för energi- och effekt möjliggöra ungefär 38 respektive 29% minskning av 
uppvärmningen, vilket potentiellt kan sänka värmekostnaderna med cirka 46 000 respektive 35 000 
svenska kronor. Samma AI -modeller kan minska toppeffekten med cirka 23% beräknad per 24 
timmar. Det är värt att notera att den linjära modellen kan marginellt öka FV-behovet något, vilket 
leder till en ökning av värmekostnaderna. Vidare inkluderar tabellen resultat för de 10 högsta 
effekttimmar, vilket visar en ökning för den linjära modellen när det gäller toppeffekten, medan AI-
modellerna kan minska de högsta topparna med cirka 6%. AI-modellen för optimal värmeeffekt för 
uppvisar en något högre potential för att kapa toppar, nämligen 7%. 

Figur 3 visar tidsserier för både uppmätt och predikterat FV, tillsammans med utomhustemperaturer. 
Tidsserierna omfattar 24-timmars medelvärden och maximala FV-värden per dygn, tillsammans med 
24-timmars medelvärden av utomhustemperaturdata för hela året, samt diagram för de kalla 
månaderna januari och februari. AI-modellens predikteringar omfattar resultat från när modellen är 
optimerad för termisk komfort, minskad energianvändning och värmeeffekt. Dessutom tillkommer för 
jämförelseändamål predikterad resultat från den linjära modellen. Generellt sett är högre toppar 
märkbara under perioder med lägre utomhustemperaturer, men det framgår att linjära modellen 
uppvisar störst värmeeffektbehov, följt av uppmätta värden och sedan AI-modellens resultat. Utöver 
reducerad effekt minskar energianvändningen, vilken motsvarar den totala arean under respektive 
kurva. Dessutom belyser resultaten den linjära modellens oförmåga att svara på utetemperaturens 
dynamik, vilket begränsar dess förmåga att justera och prediktera optimal FV-användning.   
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Tabell 2: Årligt uppmätt och beräknat fjärrvärme (FV) (kWh) och effekttoppar (kWh/h) 

 Energi (kWh) eller 
effekttoppar (kWh/h)  

Energi eller effekttoppar 
per levererad FV (%) 

Årlig uppmätta FV, år 2021 (kWh) 233 238 100,0 
Årlig FV - linjär modell (kWh) 238 624 102,3 
Årlig FV - AI-optimal modell för termisk komfort 
(kWh) 222 691 95,5 

Årlig FV - AI-optimal modell för energi (kWh) 145 364 62,3 

Årlig FV - AI-optimal modell för effekt (kWh) 166 517 71,4 

Årlig sparad energi (FV) - linjär modell (kWh) -5 386 -2,3 

Årlig sparad energi (FV) - AI-optimal modell för 
termisk komfort (kWh) 10 547 4,5 

Årlig sparad energi (FV) - AI-optimal modell för 
energi (kWh) 87 874 37,7 

Årlig sparad energi (FV) - AI-optimal modell för 
effekt (kWh) 66 721 28,6 

Årlig uppmätta toppeffekt per 24 timmar, år 2021 
(kWh/h) 11 963 100,0 

Årlig sparad toppeffekt per 24 timmar - linjär 
modell (kWh/h) -1 058 -8,8 

Årlig sparad toppeffekt per 24 timmar - AI-optimal 
modell för termisk komfort (kWh/h) 403 3,4 

Årlig sparad toppeffekt per 24 timmar - AI-optimal 
modell för energi (kWh/h) 2 735 22,9 

Årlig sparad toppeffekt per 24 timmar - AI-optimal 
modell för effekt (kWh/h) 2 745 22,9 

Topp 10 uppmätta toppeffekt per timme, år 2021 
(kWh/h) 76,7 100,0 

Topp 10 toppeffekt per timme - linjär modell 
(kWh/h) 78,7 102,6 

Topp 10 toppeffekt per timme - AI-optimal modell 
för termisk komfort (kWh/h) 72,0 93,9 

Topp 10 toppeffekt per timme - AI-optimal modell 
för energi (kWh/h) 73,0 95,2 

Topp 10 toppeffekt per timme - AI-optimal modell 
för effekt (kWh/h) 71,2 92,9 
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Figur 3: Till vänster visas 24-timmars genomsnittliga och maximala fjärrvärmeförsörjningsdata, 
tillsammans med 24-timmars genomsnittlig utomhustemperatur (Tout) för hela 2021. Till höger visas 
figurerna samma data men specifikt för januari och februari. 
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Byggnads energisignatur 
I Figur 4 presenteras energisignaturen för den levererade FV i förhållande till utomhustemperaturen för 
dygnsmedelvärden under 2021, för de tre optimerade AI-modellerna, uppmätt FV och den linjära 
modellen. 
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Figur 4: Energisignaturdiagram för den levererade fjärrvärmen för uppvärmning och varmvatten i den 
studerade byggnaden. Punkterna representerar levererade FV per dygn och dygnsmedel 
utetemperaturer under 2021. 

De horisontella linjerna som visas i Figur 4 motsvarar det nästan konstanta tappvarmvattenbehovet 
inklusive VVC-förluster, vilket förblir relativt stabil under året. De sluttande linjerna representerar främst 
ökande behov av uppvärmning av utrymmen, vilket korrelerar med sjunkande utomhustemperaturer. 
Särskilt visar AI-modellerna för optimal energianvändning (minimera FV-leveransen) och optimal 
värmeeffekt betydligt lägre värden, vilket tyder på effektiv reglering av den levererade FV för 
uppvärmning av utrymmen, i jämförelse med den optimala termiska komfortmodellen. Den optimala 
termiska komfortmodellen syftar till att prioritera termisk komfort och lägger större vikt vid att bibehålla 
inomhustemperaturerna nära angivna inställda nivåer, vilket resulterar i mindre potential för 
energibesparingar med denna modell. I alla fall är resultaten från den linjära modellen närmare de 
uppmätta data, eftersom den aktuella värmeleveransen bestäms genomgenom en linjär reglerkurva 
med viss dämpningsförmåga. 

Balanstemperaturen (Tb) är i Figur 4 den utetemperatur där lutande linjen skär den horisontella linjen. 
Tb anger den temperatur vid vilken ingen extern uppvärmningsförsörjning krävs för att upprätthålla 
termisk komfort inom byggnaden; med andra ord räcker interna värmekällorna för att upprätthålla 
inomhustemperaturen vid lämpliga nivåer. Resultaten avslöjar att en lägre Tb erhålls från AI-modellen 
när den optimera för energianvändning och effektminskning, vilket indikerar större potential för 
besparingar med dessa modeller i jämförelse med optimering för termisk komfort och den linjära 
modellen. En lägre balanstemperatur innebär att värme behöver först tillföras vid en lägre 
utetemperatur, vilket i sin tur resulterar i lägre FV-behov för att upprätthålla inomhustemperaturen 
inom önskade nivåer. 
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Bilaga C:  Detaljerad kostnadsanalys 
Tabell 3: Kostnadsanalys resultat för olika modeller 

 

FV (faktiskt 
kostnad 
baserad på 
uppmätt FV) 

FV-linjär 
modell 

FV för AI-modell 
för optimal 
termisk komfort 

FV för AI-modell 
för optimal 
energianvänd-
ning 

FV för AI-
modell för 
optimal 
effekt 

K vid -9,8 °C, under 
måndagen den 2021-12-27 34 33 33 27 32 
 
Kapacitetsavgift (kr) 29 879 29 668 29 568 23 835 28 173 
Säsongsuppdelat energipris 
2024 (kr) 110 726 111 456 106 076 70 750 80 832 
 
Volymavdrag (kr) -8 163 -8 163 -8 163 -8 163 -8 163 
 
Totalt (kr) 132 442 132 961 127 481 86 422 100 841 
Besparing (% av totalt FV 
faktiskt kostnad)  -0,4% 3,7% 34,7% 23,9% 

 

Tabell 4: Kostnadsanalys detaljerade beräkningar för olika modeller baserad på Gävle Energi FV 
avgifter 2024 

Kapacitetspris 2024  

Kapacitetsavgift = K x KP 
 

K = Kapacitetsbehov vid -10 grader (=24*dygnmedel)  

KP = Kapacitetspris = 37,12 kr/kWh. 37,12 

 
 

Säsongsuppdelat energipris 2024  

Vinterpris (januari – mars, november – december) 503,4 kr/MWh. 503,4 
Vår-/höstpris (april – maj, september – oktober) 431,7 kr/MWh. 431,7 
Sommarpris (juni – augusti) 165,2 kr/MWh. 165,2 

  
Volymavdrag 2024  
Om fjärrvärmeförbrukning är större än 100 MWh görs ett avdrag på priset varje månad enligt 
tabellen nedan. Prisavdrag 
0 – 100 0 kr/MWh 
101 – 250 35 kr/MWh 
251 – 500 55 kr/MWh 

 

 

https://www.gavleenergi.se/fjarrvarme/priser-och-prisjamforelser/
https://www.gavleenergi.se/fjarrvarme/priser-och-prisjamforelser/
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Bilaga D:  Graphic User Interface (GUI) till presenterade AI modellen 
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Graphic User Interface (GUI)
Introduction
This document introduces the Graphic User Interface (GUI) for the developed 
Python based AI-powered solution for district heating optimization. The software 
consists of five tabs that are explained in details here. 

1-Parameters
The parameters tab shown below enables the user to set different parameters 
such as path to the training data and model parameters. In this section, you can 
find a detailed description for each parameter. 

Models Path: The path to the ensemble of fully trained convolutional neural 
networks (CNNs). The path should include a number of files with filenames 
starting from ‘1.mdl’ up to ‘ ﻿.mdl’, where ﻿ is the number of models in the 
ensemble. By default, the software is provided with a number of trained CNN 
models. 

N N
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VAE Model Path: The path to the trained variational auto-encoder (VAE) model. By 
default, the software is provided with a trained VAE model. 

Data Path: The path to the training data. The data format should be ‘.csv’, and it 
should include date, outdoor temperature, indoor temperature, supply 
temperature, and district heating (dh) columns as shown below. These data 
serves as the training data to train the model. Also, the data can be used

Device: This is the device used to train the models (the ensemble of CNN models 
and the cVAE model)

Number of Models: The number of CNN models in the ensemble of models. 

VAE Latent Size: The number of dimensions in the latent space of the cVAE model
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VAE beta: The ﻿ parameter in the cVAE objective function which is used to 
balance the reconstruction loss against the Kullback-Liber (KL) divergence loss. 

Length of History: The number of past hours for which the input data is provided 
to the model to make prediction about the future. The length of history is denoted 
by ﻿.

Length of Missed Data: The number of recent hours for which the input data is 
missing. This feature is used in cases where it is practically impossible to provide 
the most recent input data to the model. Otherwise, this parameter must be set to 
zero. 

Length of Prediction: The number of future hours for which the model makes 
prediction. 

Set to Default: This button is used to set the parameters to their corresponding 
default values. 

Save Parameters: This button is used to save the current parameters into a file. 
The saved parameters are restored next time the program is starting. 

2-Optimize
The optimization tab is the main tab used to find a sequence of supply 
temperature values as the control signal to keep the indoor temperature within the 
comfort range while minimizing some notions of energy consumption. 

There are two functionalities implemented in the optimization tab:

1. Optimize: In this case, a random set of the training data is used to analyze the 
output of the model. Here, the output of the model is compared with two other 
outputs: (1) the actual data provided by the data (the ground truth), and (2) the 
output of a piece-wise linear model whose parameters are optimized in 
another tab (5-Linear Model) described later in this document. The inputs to 
the optimization problem are stored in an excel file named “optim_inputs.csv”, 
and the outputs of all three options are stored in another excel file named 
“optim_results.csv”. Also, the results are displayed visually by the program as 
shown in the following figure. 

β

H
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2. Deploy: This mode of operation is used to find an optimal solution in real case 
scenarios in which only input values are available to the model. The inputs 
should be provided as an excel file. The program opens the inputs and 
processes them using the models and provides the optimal outputs both 
visually and also as an output excel file named “optim_results.csv”. An 
example input excel file accompanies the software at the following directory: 
“data/deploy_inputs.csv”. The following is a snapshot of an example output 
provided by the deploy functionality:
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The followings provide some detailed description about the parameters which can 
be set in the optimization tab.

Temperature Low: This is the minimum acceptable indoor temperature for the 
model to produce. Supply temperatures as the output of the optimization process 
for which the ensemble model predicts lower temperatures than this threshold are 
discarded by the program. 

Temperature High: This is the maximum acceptable indoor temperature for the 
model to produce. Supply temperatures as the output of the optimization process 
for which the ensemble model predicts higher temperatures than this threshold 
are discarded by the program. 

Objectives: The objective function is constructed by the weighted sum of three 
terms which are defined below.

DH sum: This is the weight of the DH sum objective. The DH sum objective is the 
integral (sum) of the predicted DH values for the prediction horizon. 
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DH std: This is the weight of the DH std objective. The DH std objective is the 
standard deviation of predicted DH values across the models in the ensemble 
averaged over the prediction horizon. 

DH max: This is the weight of the DH max objective: The DH max objective is the 
maximum predicted DH value over the prediction horizon. 

Path to Deploy Data: This is the path to find the inputs (data) to the model for the 
deploy mode. 

Path to Save Solution: This is the path to store the solution found by the model at 
both the deploy and optimization modes. 

Optimize: The button to run optimization. 

Deploy: The button to run deployment.

3-Train
This tab is used to the train the ensemble of CNN models and the cVAE model. 



Graphic User Interface (GUI) 7

Learning Rate: The learning rate which is used by the stochastic gradient descent 
method to optimize the parameters of the neural networks. 

Number of Epochs: The number of epochs to train the parameters of the neural 
networks. In each epoch, the parameters are updated using the entire data in the 
training dataset. 

Batch Size: The size of batch sampled from the training dataset at every 
optimization step. 

Path to Save Models: The path to save the newly trained models. 

Train Models: The button to initiate training of the CNN models. The number of 
CNNs trained are determined by the size of the ensemble. 

Train VAE: The button to initiate training of the cVAE model. 

4-Prediction
The prediction tab is used to evaluate the trained models (CNN models) at 
predicting a sequence of future indoor temperatures provided some inputs. The 
program also facilitates analyzing sensitivity of the model output w.r.t. each input 
by increasing and decreasing the input values by some percentages and 
predicting the outputs of the model. The model predicts three outputs: (1) the 
output for the original inputs, (2) the output for the increased inputs (displayed by 
red color), and (3) the output of the decreased inputs (displayed by blue color). 
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Decrease Supply Temp (%): The percentage to decrease the input supply 
temperature. 

Increase Supply Temp (%): The percentage to increase the input supply 
temperature.

Decrease Past Indoor Temp (%): The percentage to decrease the past indoor 
temperature as the input to the model.  

Increase Past Indoor Temp (%): The percentage to increase the past indoor 
temperature as the input to the model. 

Decrease Outdoor Temp (%): The percentage to decrease the outdoor 
temperature as the input to the model.

Increase Outdoor Temp (%): The percentage to Increase the outdoor temperature 
as the input to the model.



Graphic User Interface (GUI) 9

Decrease DH Past (%): The percentage to decrease the past DH as the input to 
the model.

Increase DH Past (%): The percentage to Increase the past DH as the input to the 
model.

5-Linear Model
This tab is used to optimize and display a piece-wise linear model used as the 
baseline for our analysis. The piece-wise linear model relates the outdoor 
temperature to the delivered DH via the following equation: 

where, ﻿ is equal to ﻿ where ﻿, and zero elsewhere. ﻿ denotes the 
outdoor temperature, and ﻿ are the weight, bias and offset parameters which 
are tuned by the optimization process. 

The supply temperature is found as a linear function of DH inputs. 

DH = ReLu(wt+ b) + ϕ,

ReLu(x) x x > 0 t

w, b,ϕ
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Piece-wise linear model parameters:

DH offset: The offset parameter of the piece-wise linear function.  

Linear Weight: The weight parameter of the piece-wise linear function. 

Linear Bias: The bias parameter of the piece-wise linear function. 

Supply Temp Linear Weight: The weight parameter of the linear function. 

Linear Bias: The bias of the linear function. 

Number of Epochs: The number of epochs to update the parameters of the linear 
models. In each epoch, all data in the dataset are used. 

Display Linear Model: The button is used to display the linear model. 

Optimize Linear Model:  The button is used to optimize the linear model. 
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